
IRJEMS International Research Journal of Economics and Management Studies  

Published by Eternal Scientific Publications 

ISSN: 2583 – 5238 / Volume 2 Issue 4 December 2023 / Pg. No: 546-558 

Paper Id: IRJEMS-V2I4P164, Doi: 10.56472/25835238/IRJEMS-V2I4P164 

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/2.0/) 

 

Original Article 

Enhancing Fermatean Fuzzy Transportation Problems: An 

Innovative Score Function-Based Optimization Strategy 
 

1
Wajahat Ali, 

2
Shakeel Javaid

 

1, 2Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, 202002, India. 

 
Received Date: 03 December 2023           Revised Date: 13 December 2023            Accepted Date: 15 December 2023         Published Date: 16 December 2023 

 

Abstract: This research paper introduces a novel approach for optimizing Fermatean fuzzy transportation problems (FFTP) by 

integrating a unique score function. Fermatean fuzzy numbers (FFN), known for their ability to represent uncertainty, pose 

challenges in transportation optimization. The proposed score function addresses these challenges by providing a 

comprehensive evaluation metric. We developed a traditional transportation problem (TP) model with a fermatean fuzzy 

environment (FFE) and, utilizing a new score function, transformed it into the deterministic form. Then, using the expected 

value technique, we created a new multiobjective, multi-level solid transportation model (MOMLST) using FFE and translated 

it into crisp form. Again, develop a multiobjective, multi-level solid transportation problem with fermatean fuzzy parameters 

(MOMLSTPWFF). It cannot be directly optimized because the fermatean fuzzy parameters (FFP) exist in levels of objective 

functions and are subject to constraints. However, we will follow the new score function in FFE and convert the mathematical 

model into crisp form. The numerical example is also provided to justify the convenience of the MOMLSTPWFF mathematical 

model and find a TP strategy that is best for our proposed mathematical model. 

Keywords: Fermatean Fuzzy Transportation Problems, Optimization, New Score Function, Uncertainty Modeling, 

Multiobjective Optimization. 

 

I. INTRODUCTION 

The fundamental TP was initially proposed by (Hitchcock, 1941) 1941 as a means to carry goods from numerous 

sources to numerous locations. In 1949, (Koopmans 1949) published his influential paper "Optimum Utilization of the 

Transport System," wherein he presented several methods for solving TP. Subsequently, in 1963, (Dantzig 1963) developed the 

simplex method in linear programming to address TP. However, this method often proves to be time-consuming due to the 

involvement of many variables and constraints, making it challenging to obtain the optimal solution efficiently. To overcome 

these challenges, researchers have since devised alternative methods, such as the (NWCM), (LCM), and (VAM). These 

methods aim to optimize the TP and suggest optimal solutions for these problems as a starting point for subsequent 

optimization. By exploring these alternative approaches, researchers have sought to improve the efficiency and effectiveness of 

solving TP, ultimately facilitating the identification of optimal solutions. The basic idea of fuzzy sets was developed by 

(Zadeh, 1965) in 1965 and further extended by (Goguen, 1967) in 1967.  
 

The TP was initially developed by Hitchcock (1941) and deals with transporting products from suppliers to final 

locations. An extension of TP is the STP, which considers three kinds of constraints instead of two, such as modes of 

transportation or types of goods. In many real-world situations, multiple objectives must be considered and optimized 

simultaneously, leading to a multiobjective problem (Kundu et al., 2014). Transportation frameworks are used in supply chain 

management, and logistics play a pivotal role by enhancing efficiency and service quality. The STP gains relevance in 

scenarios with diverse modes and flexible routes, optimizing costs and delivery times. Prior studies have examined this 

problem, drawing comparisons with the classical variant and employing fuzzy linear programming to tackle multiobjective 

challenges (Liu, 2006). (Tao and Xu, 2012) introduced the notion of a rough multiple-objective programming model tailored to 

address the intricacies of an STP. The problem variant encompasses crucial constraints associated with source availability, 

destination requirements, and conveyance capacity. They highlight the increasing scholarly attention toward multiple 

objectives, STP.  
 

(Kundu et al., 2013) tackle a multiobjective STP involving fragile goods, optimizing cost and time. The analysis 

incorporates conveyance type and quantity as factors impacting fragility. The stochastic nature of destination demand, 

influenced by breakability, is effectively addressed through the chance-constraint method. (Pramanik et al., 2013) represented 

the classical TP as a subset of linear programming, encompassing diverse conveyances for homogeneous product delivery. It 

highlights the challenge of integrating multiple conflicting objectives in real-world scenarios, leading to STP with restricted 

route capacities. They propose mitigating uncertainty by adopting flexible, imprecise fuzzy numbers representing key 
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parameters like penalties, demands, availabilities, and capacities. (Revathi et al., 2021) focused on maximizing profit by 

considering numerous objectives because the TP with a single aim is insufficient in the current market. The research notes that 

the cost parameters of distinct purposes are unrelated, making them incompatible and comparable. Fuzzy sets and fuzzy 

numbers are mentioned to deal with uncertainty in the TP. To show the effectiveness of fuzzy linear programming solutions, 

(Zimmermann, 1978) addresses the linear vector maximum problem using fuzzy linear programming techniques. They discuss 

the effects of using different techniques to combine distinct objective functions to find the best solution. They also provide 

valuable insights into the effectiveness of fuzzy linear programming in tackling multiobjective problems and offer guidance on 

selecting appropriate approaches for achieving optimal compromise solutions. 
 

This work's remaining sections are arranged as follows: The literature study is presented in Section 2, and various 

arithmetic operations, theorems, and basic definitions of the FFPA are shown in Section 3. In section 4, we built a general 

classical transportation model with FFP, the MOMLSTP model, the MOMLUSTP model, and MOMLSTPWFF. We converted 

these models into a crisp form using different mathematical programming approaches. Section 5 depicts the solution procedure 

of MOMLSTPWFF. In Section 6, we provide numerical example results to testify to the efficiency of the suggested method. At 

last, in Section 7, the findings are summarized. 
 

II. LITERATURE REVIEW 

(Chanas & Kuchta, 1996) provided a method created expressly to find the TP ideal resolution when considering 

uncertain variables. Their approach draws from the generic fuzzy coefficient linear programming issue, offering a practical 

framework to handle the uncertainties inherent in transportation optimization. It enhances decision-making processes by 

incorporating fuzziness in cost coefficients and providing a robust algorithm to determine optimal solutions. (Roy et al.,2019) 

focused on a specific type of TP known as the multiobjective multi-item inflexible STP model under uncertain parameters. To 

address this problem, they employed fuzzy goal programming techniques and fuzzy programming to find solutions that 

effectively handle uncertainty. (Sergi & Sari, 2021) introduced FFSs as a relatively new addition to fuzzy set theory. These sets 

offer the flexibility to assign fuzzy parameters from a broader domain, enabling the management of higher degrees of 

uncertainty. This advancement in fuzzy set theory provides a more comprehensive framework for handling uncertainty in 

various applications. (Sahoo,2021) proposed a novel score function utilizing FFSs was introduced to address TP influenced by 

uncertain economic and environmental factors, where precise measurements of supply, demand, and transportation costs are 

challenging. The proposed algorithm leverages arithmetic operations of FFN to achieve the best solutions for TP with uncertain 

parameters. (Sharma et al., 2022) emphasized addressing uncertainty in competitive market conditions regarding transportation 

costs, supply, and demand factors. To address impreciseness in TP, they propose the FFSs as an extension of the Pythagorean 

fuzzy set. This novel approach aims to effectively handle the volatility of market conditions and enhance decision-making 

processes in transportation logistics.  
 

(Nagar et al., 2022) presented a novel approach for optimizing a specific class of Pythagorean fuzzy TP by introducing a 

new score function. This innovative method incorporates hesitation information, enabling more accurate analysis of 

Pythagorean fuzzy numbers. The proposed score function enhances the precision and reliability of decision-making processes 

in transportation optimization. (Revathi and Mohanaselvi, 2021) introduce a comprehensive model for addressing a four-

dimensional multiobjective multi-item fractional TP in uncertainty. A proposed model incorporates uncertain variables in 

objectives and constraints, making it well-suited for real-life scenarios. By employing models of chance and anticipated value 

constraints grounded in uncertainty theory, they successfully derive an equivalent deterministic model for effectively tackling 

the uncertainties in the problem. (Jalil et al., 2018) proposed a comprehensive multiobjective mathematical model with fuzzy 

parameters. They introduce a fuzzy programming technique specifically tailored for solving multiobjective mathematical 

problems, offering an effective solution for the presented model and enhancing decision-making processes in solid 

transportation logistics. (Singh et al., 2019) introduced a solution methodology utilizing chance-constraint programming to 

address the STP with uncertainty characterized by the gamma distribution. Their approach extends the fuzzy programming 

technique to effectively solve multiobjective stochastic problems, providing a robust framework for handling STP uncertainty. 

This methodology enhances decision-making processes in transportation logistics by considering probabilistic constraints and 

offering a comprehensive approach to address multiobjective uncertainties. (Gupta & Kumar, 2012) identify limitations in the 

current approach for solving linear multiobjective TP with unknown variables and propose a new method to address these 

shortcomings. (Dalman, 2018) introduced the deterministic mathematical model into a single objective mathematical model 

through the convex combination method and the minimizing distance function method, providing practical tools for addressing 

the TP and facilitating decision-making in solid transportation logistics. They convert the uncertain mathematical model into an 

equivalent deterministic model by leveraging the advantages of uncertainty theory.  
 

(Senapati & Yager, 2020) introduced FFSs as an extension of intuitionistic fuzzy sets, providing a comprehensive 

comparison with Pythagorean and intuitionistic fuzzy sets. They delve into the fundamental properties of FFSs, including the 
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complement operator and the entire set of operations. (Silambarasan, 2020) examined the algebraic properties of these 

operators, providing valuable insights into the mathematical foundation of FFSs. They expand the theoretical framework of 

FFSs and enrich the understanding of their operational characteristics. (Akram et al., 2022) presented the concept of interval-

valued FFSs as a robust approach for handling uncertain and incomplete data. 
 

Additionally, they propose a novel method for directly addressing interval-valued Fuzzy Fermatean fractional TP, 

avoiding the need to convert the original problem into a crisp equivalent, thereby streamlining the solution process. It enhances 

the resilience and efficiency of addressing uncertainties in transportation logistics. (Niksirat, 2022) conducted a comprehensive 

investigation into the fully fuzzy multiobjective transportation (FFMOT) problem. They presented a novel approach utilizing 

the closest approximation for an interval to solve the FFMOT problem effectively, enabling the determination of Pareto 

optimal solutions even under conditions of uncertainty. It contributes to advancing the field of multiobjective transportation 

optimization by addressing the challenges posed by fuzziness and uncertainty, thereby facilitating informed decision-making in 

TP. The multiobjective transportation  -facility location problem is addressed by (Das & Roy 2019) using a novel technique 

that integrates the TP with the facility location problem within a multiobjective framework. Combining using a neutrosophic 

compromises programming and an alternate locate-allocate strategy to obtain nondominated solutions creates a hybrid strategy 

that offers a thorough solution methodology for this challenging problem area.  
 

(Li & Lai, 2000; Singh & Yadav, 2016) presented a fuzzy optimization technique for multiobjective TP, considering 

multiple objectives with both individual marginal evaluation and global evaluation for all objectives. They provide a 

comprehensive methodology for decision-making in multiobjective transportation optimization, offering a balanced and 

effective approach to address conflicting objectives. (Gul et al., 2021) provided a unique technique for evaluating occupational 

risks in the industry utilizing FFSs and the TOPSIS method. FFSs, an advanced version of fuzzy set theory, encompass 

intuitionistic and Pythagorean fuzzy sets, enabling efficient handling of uncertain information and improved representation of 

uncertainty. By converting them into balanced counterparts, (Shivani et al., 2022) presented a novel strategy for handling 

totally rough, imbalanced, multiobjective, fixed-charge TP. They use fuzzy programming, goal programming, and the 

weighted-sum method to improve transportation logistics decision-making. They provide Pareto-optimal solutions for the 

transformed balanced, completely rough multiobjective fixed-charge TP. Their recent study (Akram et al., 2023) introduced a 

novel approach called the Fermatean fuzzy DEA method aimed at addressing the Fermatean fuzzy multiobjective TP. By 

transforming the FFMOTP into a single objective Fermatean fuzzy TP, they demonstrate that standard algorithms can 

effectively solve it. (Sharma et al., 2023) presented FFPA as a novel methodology to address multiobjective TP within a 

Fermatean fuzzy environment (FFE). They introduced a novel score function based on the Fermatean fuzzy technique, which 

effectively converts fuzzy data into crisp data, enabling more precise analysis and decision-making. (Akram et al., 2023) 

proposed FFSs as a superior and versatile model for handling uncertainty compared to Pythagorean fuzzy sets. They examine 

the multiobjective TP inside a framework of ranking triangular FFN, a new consensus technique. Additionally, they provide a 

solution procedure that effectively solves a real-world problem, showcasing the practical applicability and efficacy of the 

proposed method. 
 

Table 2: Some Important Research Works on Different Variants of the TP and STP 

S.No. References Years Environments 
1 (Sakawa, 1984) 1984 Multiobjective Nonlinear Programming Problems to Interactive Fuzzy Goal 

Programming 

2 (Bit et al., 1992) 1992 Fuzzy programming technique for decision-making based on multiple criteria in 

transportation problems 

3 (Abd El-Wahed & Lee, 

2006) 

2006 Multiobjective transportation problems under Interactive fuzzy goal 

programming 

4 (Moanta, 2007) 2007 Using a simplex algorithm to solve the linear fractional transportation problem 

5 (Korukoğlu & Ballı, 2011) 2011 Using VAM in TP 

6 (Gupta & Kumar, 2012) 2012 Fuzzy programming approach used in linear multiobjective transportation 

problems 

7 (Kundu et al., 2013) 2013 Using fuzzy programming multiobjective multi-item STP 

8 (Bharati & Singh, 2018) 2018 Transport issue: interval-valued intuitionistic fuzzy sets 

9 (Mahmoodirad et al., 2019) 2019 Fully Intuitionistic fuzzy programming approach to the transportation problem 

10 (Senapati & Yager, 2019) 2019 Fermatean fuzzy weighted geometric operator in MCDM 

11 (Das et al.,2020) 2020 Using the type-2 fuzzy logic approach in MOGSTLP 

12 (Ghosh et al., 2021) 2021 Fully intuitionistic fuzzy programming approach in multiobjective, fully fixed-

charge solid transportation problem 

13 (Midya et al., 2021) 2021 Intuitionistic fuzzy parameters approach used to MSMOFSTP in the green 

supply chain. 
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14 (Sahoo, 2021) 2021 Fermatean fuzzy parameters in TP 

15 (Ghosh et al., 2022) 2022 MOSTP in the Pythagorean fuzzy environment 

16 (Giri & Roy, 2022) 2022 Neuromorphic programming techniques used in MOGFDFTP 

17 (Bagheri et al., 2022) 2022 A data envelopment analysis approach is proposed to solve the (FMOTP) 

18 (Bera & Mondal, 2022) 2022 Gaussian fuzzy programming approach used in MOTP 

19 (Ghosh et al., 2022) 2022 MOSTP to Preservation Technology 

20 (Sharma et al., 2023) 2023 Fermatean fuzzy new score function used in solid transportation problem 
 

III. PRELIMINARIES AND DEFINITIONS 

Basic definitions of the farmatean fuzzy programming, which are used in our proposed work, which is given below: 

Definition 3.1 "(Senapati & Yager, 2020) farmatean fuzzy sets: A farmatean fuzzy sets (FFSs) can be represented as ℱ̃ =
*〈𝜔, 𝛼ℱ̃(𝜔), 𝛽ℱ̃(𝜔):𝜔 ∈ 𝑋 〉+ 
Where 𝛼ℱ̃(𝜔): 𝑋 → ,0,1- is the degree of satisfaction and 𝛽ℱ̃(𝜔): 𝑋 → ,0,1- is the degree of dissatisfaction, including the 

condition 

0 ≤ 𝛼ℱ̃(𝜔)
3 + 𝛽ℱ̃(𝜔)

3 ≤ 1 ∀ 𝜔 ∈ 𝑋 . 
For any farmatean fuzzy sets (FFSs) ℱ̃ and 𝜔 ∈ 𝑋, 

𝜎ℱ̃(𝜔) = √1 − (𝛼ℱ̃(𝜔))
3 − (𝛽ℱ̃(𝜔))

33
  is identified as the degree of indeterminacy of 𝑥 to ℱ̃.The set 

ℱ̃ = *〈𝜔, 𝛼ℱ̃(𝜔), 𝛽ℱ̃(𝜔):𝜔 ∈ 𝑋 〉+ is denoted as ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉." 
 

Definition 3.2 "Let ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 , ℱ̃1 = 〈𝛼ℱ̃1 , 𝛽ℱ̃1〉 and ℱ̃2 = 〈𝛼ℱ̃2 , 𝛽ℱ̃2〉 be three farmatean fuzzy sets (FFSs) on the universal 

set 𝑋, and ζ > 0 be any scalar, then arithmetic operations of farmatean fuzzy sets is as follows with a numerical example. 

2.21  ℱ̃1 ⊕ ℱ̃2 = (√𝛼ℱ̃1
3 + 𝛼ℱ̃2

3 − 𝛼ℱ̃1
3𝛼ℱ̃2

3,
3

 𝛽ℱ̃1𝛽ℱ̃2  ). 

Let ℱ̃ = 〈0.4, 0.7〉 , ℱ̃1 = 〈0.8, 0.6〉 and ℱ̃2 = 〈0.2, 0.9〉 be three farmatean fuzzy sets (FFSs), and ζ = 2 be any scalar. Then 

ℱ̃1 ⊕ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.8020, 0.54) 

2.22       ℱ̃1 ⊗ ℱ̃2 = (𝛼ℱ̃1𝛼ℱ̃2 , √𝛽ℱ̃1
3 + 𝛽ℱ̃2

3 − 𝛽ℱ̃1
3𝛽ℱ̃2

33
 ). 

ℱ̃1 ⊗ ℱ̃2 = 〈0.8, 0.6〉 ⊕ 〈0.2, 0.9〉 = (0.16, 0.923) 

2.23        𝜁 ⊙ ℱ̃ = .√1 − (1 − 𝛼ℱ̃
3)𝜁

3
, 𝛽ℱ̃

𝜁/. 

𝜁 ⊙ ℱ̃ = 2⊙ 〈0.4, 0.7〉 = (0.498, 0.49) 

2.24       ℱ̃𝜁 = (𝛼ℱ̃
𝜁 , √1 − (1 − 𝛽ℱ̃

3)
𝜁3

). 

ℱ̃𝜁 = 〈0.4, 0.7〉2 = (0.064,0.828).” 
 

Definition 3.3 "Let ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 , ℱ̃1 = 〈𝛼ℱ̃1 , 𝛽ℱ̃1〉 and ℱ̃2 = 〈𝛼ℱ̃2 , 𝛽ℱ̃2〉 be three farmatean fuzzy sets (FFSs) on the universal 

set 𝑋 and ζ > 0 be any scalar, then the arithmetic operations of farmatean fuzzy sets are defined as follows. 

2.31      ℱ̃1⋃ℱ̃2 = (max{𝛼ℱ̃1 , 𝛼ℱ̃2} ,min{𝛽ℱ̃1 , 𝛽ℱ̃2}). 

ℱ̃1⋃ℱ̃2 = (max*〈0.8, 0.6〉+ ,min*〈0.2, 0.9〉+) = (0.8, 0.9) 

2.32       ℱ̃1⋂ℱ̃2 = (min{𝛼ℱ̃1 , 𝛼ℱ̃2} ,max{𝛽ℱ̃1 , 𝛽ℱ̃2}). 

ℱ̃1⋂ℱ̃2 = (min*〈0.8, 0.6〉+ ,max*〈0.2, 0.9〉+) = (0.2, 0.6) 
2.33       ℱ̃𝑐 = (𝛽ℱ̃ , 𝛼ℱ̃). 
ℱ̃𝑐 = 〈0.4, 0.7〉𝑐 = (0.7,0.4).” 
 

Accuracy Function of FFSs: 

Suppose  ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 be an FFSs, then the accuracy function of FFSs is represented as follows, 

𝐴ℱ̃(ℱ̃) = (𝛼ℱ̃
3 + 𝛽ℱ̃

3). 
 

Theorem 1 

Let ℱ̃ be a FFSs ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 then the score function ℱ̃ represented simply proceeds; 

𝑆ℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + 𝛼ℱ̃

3 − 𝛽ℱ̃
3). (min(𝛼ℱ̃ , 𝛽ℱ̃)). 

Property 1. Consider a FFSs ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉, then 𝑆ℱ̃ 
∗(ℱ̃ ) ∈ ,0,1-. 

Proof: According to the ortho-pair definition, 𝛼ℱ̃ , 𝛽ℱ̃ ∈ ,0,1-. Then, min(𝛼ℱ̃ , 𝛽ℱ̃) ∈ ,0,1-, and also 

𝛼ℱ̃
3 ≥ 𝑜, 𝛽ℱ̃

3 ≥ 0, 𝛼ℱ̃
3 ≤ 1, and 𝛽ℱ̃

3 ≤ 1 
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⇒ 1 − 𝛽ℱ̃
3 ≥ 0 

⇒ 1+ 𝛼ℱ̃
3 − 𝛽ℱ̃

3 ≥ 0 

∴
1

2
(1 + 𝛼ℱ̃

3 − 𝛽ℱ̃
3). (min(𝛼ℱ̃ , 𝛽ℱ̃)) ≥ 0 

Again 𝛼ℱ̃
3 − 𝛽ℱ̃

3 ≤ 1, add one both sides 

⇒ 1+ 𝛼ℱ̃
3 − 𝛽ℱ̃

3 ≤ 2          (∵ 𝛼ℱ̃
3 ≥ 0) 

⇒
1

2
(1 + 𝛼ℱ̃

3 − 𝛽ℱ̃
3). (min(𝛼ℱ̃ , 𝛽ℱ̃)) ≤ 1         (∵ min(𝛼ℱ̃ , 𝛽ℱ̃) ≤ 1) 

Hence, 𝑆ℱ̃ 
∗(ℱ̃ ) ∈ ,0,1-. 

New Fermatean Fuzzy Score Function (NFFSF): 

Theorem 2. 

Let ℱ̃ be a FFSs ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 then the (NFFSF) ℱ̃1𝐷 represented simply proceeds; 

𝑆ℱ̃ 
∗(ℱ̃1𝐷) =

1

2
(1 + 𝛼ℱ̃ − 𝛽ℱ̃). (min(𝛼ℱ̃ , 𝛽ℱ̃))

2 

Property 1. Consider a FFSs ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉, then 𝑆ℱ̃ 
∗(ℱ̃1𝐷) ∈ ,0,1-. 

Proof: According to the ortho-pair definition, 𝛼ℱ̃ , 𝛽ℱ̃ ∈ ,0,1-. Then, min(𝛼ℱ̃ , 𝛽ℱ̃) ∈ ,0,1-, and also 

𝛼ℱ̃ ≥ 𝑜, 𝛽ℱ̃ ≥ 0, 𝛼ℱ̃ ≤ 1, and 𝛽ℱ̃ ≤ 1 

⇒ 1 − 𝛽ℱ̃ ≥ 0 

⇒ 1+ 𝛼ℱ̃ − 𝛽ℱ̃ ≥ 0 

∴
1

2
(1 + 𝛼ℱ̃ − 𝛽ℱ̃). (min(𝛼ℱ̃ , 𝛽ℱ̃))

2 ≥ 0 

Again, 𝛼ℱ̃ ≤ 1, and 𝛽ℱ̃ ≤ 1, 𝛼ℱ̃ − 𝛽ℱ̃ ≤ 1, 

And add one on both side 

⇒ 1 + 𝛼ℱ̃ − 𝛽ℱ̃ ≤ 2  ⇒ (min(𝛼ℱ̃ , 𝛽ℱ̃) ≤ 1) ⇒ (min(𝛼ℱ̃ , 𝛽ℱ̃))
2 ≤ 1 

⇒
1

2
(1 + 𝛼ℱ̃ − 𝛽ℱ̃). (min(𝛼ℱ̃ , 𝛽ℱ̃))

2  ≤ 1         (∵ (min(𝛼ℱ̃ , 𝛽ℱ̃))
2  ≤ 1) 

Hence, 𝑆ℱ̃ 
∗(ℱ̃1𝐷) ∈ ,0,1-. 

 

Theorem 2. Let ℱ̃ be a FFSs  ℱ̃ = 〈𝛼ℱ̃ , 𝛽ℱ̃〉 then the Type 1 score function  ℱ̃1 represented simply proceeds; 

Type-1 fermatean fuzzy score function  𝑆ℱ̃ 
∗(ℱ̃11) =

1

2
(1 + 𝛼ℱ̃

2 − 𝛽ℱ̃
2). 

According to the ortho-pair definition, 𝛼ℱ̃ , 𝛽ℱ̃ ∈ ,0,1-, and 

𝛼ℱ̃
2 ≥ 𝑜, 𝛽ℱ̃

2 ≥ 0, 𝛼ℱ̃
2 ≤ 1, and 𝛽ℱ̃

2 ≤ 1 

⇒ 1 − 𝛽ℱ̃
2 ≥ 0 

⇒ 1+ 𝛼ℱ̃
2 − 𝛽ℱ̃

2 ≥ 0 

∴
1

2
(1 + 𝛼ℱ̃

2 − 𝛽ℱ̃
2) ≥ 0 

Now, again 𝛼ℱ̃
2 − 𝛽ℱ̃

2 ≤ 1, add one both sides 

⇒ 1+ 𝛼ℱ̃
2 − 𝛽ℱ̃

2 ≥ 2          (∵ 𝛼ℱ̃
2 ≥ 0) 

⇒
1

2
(1 + 𝛼ℱ̃

2 − 𝛽ℱ̃
2) ≥ 1         (∵ 〈𝛼ℱ̃ , 𝛽ℱ̃〉 ≤ 1) 

Hence, 𝑆ℱ̃ 
∗(ℱ̃11) ∈ ,0,1-. Similarly, 

 

Type-2 fermatean fuzzy score function  𝑆ℱ̃ 
∗(ℱ̃12) =

1

3
(1 + 2𝛼ℱ̃

3 − 𝛽ℱ̃
3). 

Type -3 fermatean fuzzy score function  𝑆ℱ̃ 
∗(ℱ̃13) =

1

2
(1 + 𝛼ℱ̃

2 − 𝛽ℱ̃
2). |𝛼ℱ̃ − 𝛽ℱ̃| 

"Let  ℱ̃1 = 〈𝛼ℱ̃1 , 𝛽ℱ̃1〉 and ℱ̃2 = 〈𝛼ℱ̃2 , 𝛽ℱ̃2〉 be two farmatean fuzzy sets (FFSs), and then we have the following operation, 

𝑆ℱ̃ 
∗(ℱ̃1 ) ≥ 𝑆ℱ̃ 

∗(ℱ̃2 ) with 𝐴ℱ̃(ℱ̃1) > 𝐴ℱ̃(ℱ̃2)  iff  ℱ̃1 > ℱ̃2. 

𝑆ℱ̃ 
∗(ℱ̃1 ) ≤ 𝑆ℱ̃ 

∗(ℱ̃2 ) with 𝐴ℱ̃(ℱ̃1) < 𝐴ℱ̃(ℱ̃2)  iff  ℱ̃1 < ℱ̃2. 

𝑆ℱ̃ 
∗(ℱ̃1 ) = 𝑆ℱ̃ 

∗(ℱ̃2 ) with 𝐴ℱ̃(ℱ̃1) = 𝐴ℱ̃(ℱ̃2)  iff  ℱ̃1 = ℱ̃2." 
 

Example 1. Let  ℱ̃1 = 〈0.7,0.6〉 and ℱ̃2 = 〈0.8,0.5〉 be two farmatean fuzzy sets (FFSs); then we have the following operation, 

By using the score function 𝑆ℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + 𝛼ℱ̃

3 − 𝛽ℱ̃
3). (min(𝛼ℱ̃ , 𝛽ℱ̃)). 

𝑆ℱ̃ 
∗(ℱ̃1 ) =

1

2
(1 + 0.73 − 0.63). (min(0.7,0.6)) = 0.337 
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𝑆ℱ̃ 
∗(ℱ̃2 ) =

1

2
(1 + 0.83 − 0.53). (min(0.8,0.5)) = 0.346 

Hence  𝑆ℱ̃ 
∗(ℱ̃1 ) < 𝑆ℱ̃ 

∗(ℱ̃1 )  ⇒ ℱ̃1 < ℱ̃2. 
 

Example 2. Let  ℱ̃1 = 〈0.9,0.8〉 and ℱ̃2 = 〈0.6,0.5〉 be two farmatean fuzzy sets (FFSs); then we have the following operation, 

By using the score function 𝑆ℱ̃ 
∗(ℱ̃ ) =

1

2
(1 + 𝛼ℱ̃

3 − 𝛽ℱ̃
3). (min(𝛼ℱ̃ , 𝛽ℱ̃)). 

𝑆ℱ̃ 
∗(ℱ̃1 ) =

1

2
(1 + 0.93 − 0.83). (min(0.9,0.8)) = 0.486 

𝑆ℱ̃ 
∗(ℱ̃2 ) =

1

2
(1 + 0.63 − 0.53). (min(0.6,0.5)) = 0.022 

Hence  𝑆ℱ̃ 
∗(ℱ̃1 ) > 𝑆ℱ̃ 

∗(ℱ̃1 )  ⇒ ℱ̃1 > ℱ̃2. 

IV. MATHEMATICAL MODEL 

We use the notations mentioned below to create a mathematical model of the TP. 

Notations 

𝑖: the origin,  ∀ 𝑖 = 1,2, . . . , 𝐼 
𝑗: the destination,  ∀ 𝑗 = 1,2, . . . , 𝐽 
𝑚: total number of sources, 

𝑛: total number of destinations, 

𝑐𝑖𝑗 : transportation cost per unit product from 𝑖th source to 𝑗th destination, 

𝑠𝑖: availability of goods at 𝑖th origin, 

𝑑𝑗: demand at 𝑗th destination, 

𝑥𝑖𝑗 : The amount of cargo that must be moved from 𝑖th source location to 𝑗th destination location 

𝑘: The number of conveyances,∀ 𝑘 = 1,2, . . . , 𝐾 

𝑡: The objective function, ∀ 𝑡 = 1, 2, . . . , 𝑇 

𝑥𝑖𝑗𝑘 :  Number of goods transported by conveyance 𝑘 from source 𝑖 to destination 𝑗 

𝑠𝑖: The availability of goods at origin 𝑖 (the total amount of items supplied by the source 𝑖,  ∀ 𝑖 = 1,2, . . . , 𝑚.) 
𝑑𝑗: Product demand at destination 𝑗 (the total amount of items received by destination 𝑗,  ∀ 𝑗 = 1,2, . . . , 𝑛.) 

𝑒𝑘: Product shipment capacities of conveyance 𝑘 

𝐶(𝑡)
𝑖𝑗𝑘: The unit transportation cost for the objective function at level 𝑡 from the 𝑖th source to the 𝑗th destination via the kth 

mode of conveyance 

𝐶𝑖̅𝑗𝑘
(𝑡)
: The unknown unit transportation cost for the objective function at level 𝑡 from the 𝑖th source to the 𝑗th destination via 

the kth mode of conveyance 

𝑠̃𝑖: Unknown availability of items at 𝑖 

𝑑̃𝑗: Unknown requirement of items at 𝑗 

𝑒̃𝑘: Unknown items cargo capacity of the conveyance 𝑘 

The formulation of the mathematical model of a traditional TP is defined as follows: 
 

Model 4.1 

Minimize                                               𝑍 = ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗                                                 (1) 

Subject to the constraints: 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑠𝑖  (𝑖 = 1,2, . . . , 𝑚)                  (2) 

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 ≥ 𝑑𝑗  (𝑗 = 1,2. . . . , 𝑛)                   (3) 

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖 𝑎𝑛𝑑 𝑗.                              (4) 

According to constraint (1), the amount of goods that can be found at the source must be greater than or equal to the 

amount that needs to be delivered to the destinations from the source. Constraints (2) indicate that the number of items that 

must be delivered from the sources to the destination must satisfy the destination's minimum requirements. The constraint (3) 

demonstrates that the quantity of goods delivered cannot be less than zero. 
 

Model 4.2 

The mathematical model of traditional TP with FFP. 

Minimize 

𝑧 = ∑ ∑ 𝐶𝑖𝑗
ℱ̃ 𝑛

𝑗=1
𝑚
𝑖=1 𝑥𝑖𝑗                                                        (5) 

Subject to the constraints: 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑠𝑖

ℱ̃ , (𝑖 = 1,2, . . . , 𝑚)                     (6) 
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∑ 𝑥𝑖𝑗
𝑚
𝑖=1 ≥ 𝑑𝑗

ℱ̃ , (𝑗 = 1,2. . . . , 𝑛)          (7) 

Where 

𝑠𝑖
ℱ̃ = ( 𝛼𝑠̃𝑖 , 𝛽𝑠̃𝑖)  and  0 ≤ 𝛼𝑠̃𝑖

3 + 𝛽𝑠̃𝑖
3 ≤ 1, 

𝑏𝑗
ℱ̃ = ( 𝛼𝑏̃𝑖 , 𝛽𝑏̃𝑖)  and  0 ≤ 𝛼𝑏̃𝑖

3 + 𝛽𝑏̃𝑖
3 ≤ 1, 

𝐶𝑖𝑗
ℱ̃ = ( 𝛼𝑐𝑖̃𝑗 , 𝛽𝑐̃𝑖𝑗)  and 0 ≤ 𝛼𝑐𝑖̃𝑗

3 + 𝛽𝑐̃𝑖𝑗
3 ≤ 1, 

xij ≥ 0 ∀ i and j.                          (8) 
 

Now convert the mathematical model 4.2 of the transportation problem with FFP into crisp form using NFFSF. The 

mathematical model 4.2 can be represented as follows. 
 

Model 4.3 

Minimize 

z = ∑ ∑ S(Cij
ℱ̃ )n

j=1
m
i=1 xij                                                                   (9) 

 

Subject to the constraints: 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑆(𝑠𝑖

ℱ̃ ), (𝑖 = 1,2, . . . , 𝑚)                (10) 

∑ xij
m
i=1 ≥ S(dj

ℱ̃ ), (j = 1,2. . . . , n)                (11) 

xij ≥ 0 ∀ i and j.                             (12) 

Assume a hierarchy-based decision-making system where there are t decision-makers (DM) and t objectives that 

must be satisfied. We once again developed the MOMLST model to use the above-mentioned notations. 
 

Model 4.4 

The mathematical model of the MOMLST problem for levels t is prescribed as follows, 

Level 1 

        Minx̅1 ∑ ∑ ∑ C(1)ijkxijk
K
k=1

J
j=1

I
i=1      (13) 

Level 2 

Where  x̅2 solves 

       Minx̅2 ∑ ∑ ∑ C(2)ijkxijk
K
k=1

J
j=1

I
i=1      (14) 

                                                : : : 

                                                : : : 

                                                : : : 

Level t 

Where  𝑥̅𝑡  solves 

Min𝑥̅𝑡 ∑ ∑ ∑ 𝐶(𝑡)
𝑖𝑗𝑘𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                                     (15) 

Subject to the constraints: 

∑ ∑ xijk
K
k=1

J
j=1  ≤  si, i = 1,2, . . . , I.                        (16) 

∑ ∑ xijk
K
k=1

I
i=1  ≤ dj , j = 1,2, . . . , J.                             (17) 

∑ ∑ xijk
J
j=1

I
i=1  ≤ ek , k = 1,2, . . . , K.               (18) 

xijk ≥ 0, i = 1,2, . . . , I  j = 1,2, . . . , J  k = 1,2, . . . , K.                      (19) 

Multiobjective multi-level uncertain solid transportation model: 
 

Model 4.5 

In (MOMLST) model, the cost of the objective function, availability, demand, and cargo capacity of the conveyance are 

uncertain in nature. The (MOMLUST) for levels 1, 2, .,𝑡 can be represented as follows, 
 

Level 1 

Min𝑥̅1 ∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(1)
 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                (20) 

Level 2 

Where  𝑥̅2 solves 

Min𝑥̅2 ∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(2)
 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                (21) 

           :   :    : 

                                               :   :    : 
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                                               :   :    : 

Level t 

Where  𝑥̅𝑡  solves 

Min𝑥̅𝑡 ∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(𝑡)
𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                       (22) 

Subject to the constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐽
𝑗=1  ≤  𝑠̃𝑖 , 𝑖 = 1,2, . . . , 𝐼.                               (23) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐼
𝑖=1  ≤ 𝑑̃𝑗  , 𝑗 = 1,2, . . . , 𝐽.                        (24) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1  ≤  𝑒̃𝑘 , 𝑘 = 1,2, . . . , 𝐾.                      (25) 

𝑥𝑖𝑗𝑘 ≥ 0, 𝑖 = 1,2, . . . , 𝐼  𝑗 = 1,2, . . . , 𝐽  𝑘 = 1,2, . . . , 𝐾.                         (26) 

Now, we convert model 4.5 by utilizing the expected value method in its predictable form because all the parameters involved 

in model 4.5 are uncertain in nature. Therefore, the deterministic model of MOMLUST is described as follows. 

Model 4.6 

The deterministic model of MOMLUST has been represented in this section. 

Level 1 

Min𝑥̅1 𝐸(∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(1)
 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 )               (27) 

Level 2 

Where 𝑥̅2 solves 

  Min𝑥̅2 𝐸(∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(2)
 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 )            (28) 

                                           : : : 

                                           : : : 

                                           : : : 

Level t 

Where  𝑥̅𝑡  solves 

Min𝑥̅𝑡 𝐸(∑ ∑ ∑ 𝐶𝑖̅𝑗𝑘
(𝑡)
𝑥𝑖𝑗𝑘)

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                (29) 

Subject to the constraints: 

𝐸(∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐽
𝑗=1 − 𝑠̃𝑖) ≤ 0, 𝑖 = 1,2, . . . , 𝐼.                         (30) 

𝐸(∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐼
𝑖=1 − 𝑑̃𝑗 ≤ 0 , 𝑗 = 1,2, . . . , 𝐽.                 (31) 

𝐸(∑ ∑ 𝑥𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1 − 𝑒̃𝑘) ≤ 0, 𝑘 = 1,2, . . . , 𝐾.               (32) 

𝑥𝑖𝑗𝑘 ≥ 0, 𝑖 = 1,2, . . . , 𝐼  𝑗 = 1,2, . . . , 𝐽  𝑘 = 1,2, . . . , 𝐾.                              (33) 

Now, we apply the properties of the expected value approach in the above-mentioned model 4.6., the model MOMLUST has 

been represented given below. 

Model 4.7 

Level 1 

Min𝑥̅1 ∑ ∑ ∑ 𝐸(𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 𝐶𝑖̅𝑗𝑘

(1)
)𝑥𝑖𝑗𝑘                (34) 

Level 2 

Where 𝑥̅2 solves 

Min𝑥̅2 ∑ ∑ ∑ 𝐸(𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 𝐶𝑖̅𝑗𝑘

(2)
)𝑥𝑖𝑗𝑘                (35) 

                                          : : : 

                                          : : : 

                                          : : : 

Level t 

Where 𝑥̅𝑡  solves 

Min𝑥̅𝑡 ∑ ∑ ∑ 𝐸(𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 𝐶𝑖̅𝑗𝑘

(𝑡)
)𝑥𝑖𝑗𝑘                       (36) 

Subject to the constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐽
𝑗=1 − 𝐸(𝑠̃𝑖) ≤ 0, 𝑖 = 1,2, . . . , 𝐼.                       (37) 

𝐸(𝑑̃𝑗) − ∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐼
𝑖=1 ≤ 0 , 𝑗 = 1,2, . . . , 𝐽.                                          (38) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1 −  𝐸(𝑒̃𝑘) ≤ 0, 𝑘 = 1,2, . . . , 𝐾.            (39) 
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𝑥𝑖𝑗𝑘 ≥ 0, 𝑖 = 1,2, . . . , 𝐼  𝑗 = 1,2, . . . , 𝐽  𝑘 = 1,2, . . . , 𝐾.                           (40) 
 

The MOMLSTPWFF model: 

The mathematical model MOMLSTPWFF, including the above-mentioned nomenclatures for levels 1,2, . . . , 𝑡, is described 

below. 

Model 4.8 

Level 1 

Min𝑥̅1 ∑ ∑ ∑ 𝐶(1)
𝑖𝑗𝑘

ℱ̃
𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                        (41) 

Level 2 

Where 𝑥̅2 solves 

Min𝑥̅2 ∑ ∑ ∑ 𝐶(2)
𝑖𝑗𝑘

ℱ̃̃
𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                        (42) 

                                           : : : : 

                                           : : : : 

                                           : : : : 

Level t 

Where 𝑥̅𝑡  solves 

Min𝑥̅𝑡 ∑ ∑ ∑ 𝐶(𝑡)
𝑖𝑗𝑘

ℱ̃̃
𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                              (43) 

Subject to the constraints  

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐽
𝑗=1  ≤  𝑠𝑖

ℱ̃ , 𝑖 = 1,2, . . . , 𝐼.                             (44) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐼
𝑖=1  ≤ 𝑑𝑗

ℱ̃  , 𝑗 = 1,2, . . . , 𝐽.                                       (45) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1  ≤  𝑒𝑘

ℱ̃ , 𝑘 = 1,2, . . . , 𝐾.                    (46) 

Where, 

𝑠𝑖
ℱ̃ = ( 𝛼𝑠̃𝑖 , 𝛽𝑠̃𝑖)  and  0 ≤ 𝛼𝑠̃𝑖

3 + 𝛽𝑠̃𝑖
3 ≤ 1, 

𝑑𝑗
ℱ̃ = ( 𝛼𝑑̃𝑖 , 𝛽𝑑̃𝑖)  and  0 ≤ 𝛼𝑏̃𝑖

3 + 𝛽𝑏̃𝑖
3 ≤ 1, 

𝑒𝑘
ℱ̃ = ( 𝛼𝑒̃𝑘 , 𝛽𝑒̃𝑘)  and 0 ≤ 𝛼𝑒̃𝑘

3 + 𝛽𝑒̃𝑘
3 ≤ 1, 

𝐶(𝑡)
𝑖𝑗𝑘

ℱ̃
= ( 𝛼𝑐𝑖̃𝑗 , 𝛽𝑐𝑖̃𝑗)  and 0 ≤ 𝛼𝑐̃𝑖𝑗

3 + 𝛽𝑐𝑖̃𝑗
3 ≤ 1 

𝑥𝑖𝑗𝑘 ≥ 0, 𝑖 = 1,2, . . . , 𝐼, 𝑗 = 1,2, . . . , 𝐽, 𝑘 = 1,2, . . . , 𝐾.                           (47) 
 

The model mentioned above (41)– (47) is created assuming all relevant parameters are extending versions of fuzzy 

parameters. However, in the real world, there is always some degree of ambiguity, which complicates the model. It is currently 

considered that the problem's variables are all independent and fermatean fuzzy. The model mentioned above is known as 

MOMLSTPWFF. It cannot be directly optimized because the FFP exists in subject to the constraints and objective functions. 

However, we will follow the new score function in FFSs and convert model 4.8 into crisp form. Model 4.8 can be restated by 

considering the anticipated values of subject to the constraints and objective functions for 1,2, . . . , 𝑡, levels. 
 

Model 4.9 

Level 1 

Min𝑥̅1 ∑ ∑ ∑ 𝑆(𝐶(1)
𝑖𝑗𝑘

ℱ̃
) 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1                                    (48) 

Level 2 

Where 𝑥̅2 solves 

Min𝑥̅2 ∑ ∑ ∑ 𝑆(𝐶(2)
𝑖𝑗𝑘

ℱ̃̃
) 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1      (49) 

                                                    : : : : 

                                                    : : : : 

                                                    : : : : 

Level t 

Where 𝑥̅𝑡  solves 

Min𝑥̅𝑡 ∑ ∑ ∑ 𝑆(𝐶(𝑡)
𝑖𝑗𝑘

ℱ̃̃
) 𝑥𝑖𝑗𝑘

𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1     (50) 

Subject to the constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐽
𝑗=1  ≤  𝑆(𝑠𝑖

ℱ̃ ), 𝑖 = 1,2, . . . , 𝐼.                (51) 
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∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1

𝐼
𝑖=1  ≤ 𝑆(𝑑𝑗

ℱ̃ ) , 𝑗 = 1,2, . . . , 𝐽.                (52) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1  ≤  𝑆(𝑒𝑘

ℱ̃), 𝑘 = 1,2, . . . , 𝐾.                (53) 

𝑥𝑖𝑗𝑘 ≥ 0, 𝑖 = 1,2, . . . , 𝐼, 𝑗 = 1,2, . . . , 𝐽, 𝑘 = 1,2, . . . , 𝐾. )               (54) 
 

V. SOLUTION METHODOLOGY 

We developed a methodology for dealing with MOMLSTPWFF problems in an FFE. The suggested method includes 

the following steps: 
 

Step 1: First, we create a multiobjective balancing solid transportation issue in which the total production and overall demand 

are equal. 

Step 2: Then, convert the MOMLSTPWFF problems into crisp form using NFFSF with FFE. 

Step 3: At this point, deal with this problem for all objectives individually. We obtain possible primary responses for every 

objective function. 

Step 4: Determine the entire cost and duration of the transportation and deterioration cost during transportation. 

Step 5: Using the Lingo 20.0 software package, solve the transportation problem using Fermatean fuzzy programming 

methodology. 
 

VI. ILLUSTRATION OF MOMLSTPWFF 

The numerical example is provided here to justify the convenience of MOMLSTPWFF. Finding a transportation 

planning strategy that is best for the MOMLSTPWFF. We want to optimize the best solution of three objective functions, viz., 

𝑍1
∗= Minimize total transportation costs, 𝑍2

∗= Minimize total transportation time, 𝑍3
∗=Minimize the deterioration cost during 

transportation. Each parameter used in the MOMLSTPWFF problem is an FFN in FFE. To accomplish this, the fermatean 

fuzzy programming approach has been implemented to examine the uncertainty. In MOMLSTPWFF, the FFN's total 

transportation cost, total transportation time, and deterioration cost during transportation for each unit of items from 𝑖 source to 

𝑗 destinations for 𝑖 = 1,2,3 and 𝑗 = 1,2,3,4  are obtained solution using the fermatean fuzzy programming with NFFSF. 

However, both the supply and demand and the cost of objectives are measured using NFFSF. 
 

The Fermatean fuzzy data are provided below and converted to deterministic form using the NFFSF 𝑆ℱ̃ 
∗(ℱ̃1𝐷) =

1

2
(1 + 𝛼ℱ̃ − 𝛽ℱ̃). (min(𝛼ℱ̃ , 𝛽ℱ̃))

2. 
 

Table 3: Fermatean Fuzzy Total Transportation Cost 

Source 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

𝑎1 (0.4, 0.9) (0.3, 0.8) (0.1, 0.6) (0.2, 0.99) 

𝑎2 (0.7, 0.8) (0.1, 0.9) (0.2, 0.6) (0.2, 0.1) 

𝑎3 (0.5, 0.8) (0.7, 0.99) (0.1, 0.8) (0.7, 0.9) 
 

Table 4: Fermatean Fuzzy Total Transportation Time 

Source 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

𝑎1 (0.5, 0.9) (0.7, 0.5) (0.2, 0.9) (0.6, 0.9) 

𝑎2 (0.6, 0.4) (0.1, 0.99) (0.6, 0.8) (0.4, 0.7) 

𝑎3 (0.3, 0.8) (0.8, 0.6) (0.5, 0.1) (0.3, 0.9) 
 

Table 5: Fermatean Fuzzy Deterioration Cost During Transportation 

Source 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

𝑎1 (0.1, 0.7) (0.3, 0.5) (0.2, 0.7) (0.8, 0.7) 

𝑎2 (0.2, 0.8) (0.1, 0.9) (0.8, 0.1) (0.4, 0.7) 

𝑎3 (0.8, 0.1) (0.7, 0.8) (0.4, 0.9) (0.5, 0.9) 
 

Table 6: Fermatean Fuzzy Supply 

𝒊 𝒂𝟏 𝒂𝟐 𝒂𝟑 

(𝛼ℱ̃𝑖 , 𝛽ℱ̃𝑖) (0.6, 0.4) (0.4, 0.9) (0.6, 0.5) 

 

Table 7: Fermatean Fuzzy Demand 

𝒋 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

.𝛼ℱ̃𝑗 , 𝛽ℱ̃𝑗/ (0.3, 0.2) (0.4, 0.8) (0.4, 0.5) (0.7, 0.5) 
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Now, we use the NFFSF 𝑆ℱ̃ 
∗(ℱ̃1𝐷) =

1

2
(1 + 𝛼ℱ̃ − 𝛽ℱ̃). (min(𝛼ℱ̃ , 𝛽ℱ̃))

2 in fermatean fuzzy programming, the fermatean 

fuzzy total transportation cost, total transportation time, deterioration cost during transportation availability and demand to 

convert all data as mentioned above into the crisp form. The crisp data are presented as follows; 
 

Table 8: Total Transportation Cost With Crisp Form 

Source 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

𝑎1 (0.04) (0.0225) (0.0025) (0.0042) 

𝑎2 (0.2205) (0.001) (0.012) (0.0055) 

𝑎3 (0.0875) (0.1739) (0.0015) (0.196) 
 

Table 9: Total Transportation Time With Crisp Form 

Source 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

𝑎1 (0.075) (0.15) (0.006) (0.126) 

𝑎2 (0.096) (0.00055) (0.144) (0.056) 

𝑎3 (0.0225) (0.216) (0.007) (0.018) 
 

Table 10: Deterioration Cost During Transportation With Crisp Form 

Source 𝑏1 𝑏2 𝑏3 𝑏4 

𝑎1 (0.002) (0.036) (0.01) (0.2695) 

𝑎2 (0.008) (0.001) (0.0085) (0.056) 

𝑎3 (0.0085) (0.2205) (0.04) (0.075) 
 

Table 11: Supply in Crisp form 

𝒊 𝒂𝟏 𝒂𝟐 𝒂𝟑 

(𝛼ℱ̃𝑖 , 𝛽ℱ̃𝑖) (0.096) (0.2025) (0.1375) 

 

Table 12: Demand in Crisp form 

𝒋 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 

.𝛼ℱ̃𝑗 , 𝛽ℱ̃𝑗/ (0.022) (0.072) (0.192) (0.15) 

 

Since total supply is equal to total demand (0.436), then this problem is called the multiobjective balance transportation 

problem. Using LINGO-20.0 software, the optimum solution has been determined to be as follows. The minimization of 

transportation costs (𝑍1
∗) is = 0.00167065, and minimization of total transportation time (𝑍2

∗) is 0.0094416, and the 

minimization of deterioration during transportation (𝑍3
∗) is 0.0126295. 

 

Table 13: Solution of Minimization of Total Transportation Cost 

Efficient Transportation Planning Optimal Objective Value's (𝑍1
∗) 

𝑥13 = 0.0545, 4 = 0.0415, 𝑥21 = 0.022, 𝑥22 = 0.072, 

𝑥24 = 0.1085, 𝑥33 = 0.1375 

0.00167065 

 

Table 14: Solution of Minimization of Total Transportation Time 

Efficient Transportation Planning Optimal Objective Value's (𝑍2
∗) 

𝑥13 = 0.096, 𝑥22 = 0.072, 𝑥24 = 0.1305, 𝑥31 = 0.022, 

𝑥33 = 0.096, 𝑥34 = 0.0195 

0.0094416 

 

Table 15: Solution of Minimization the Deterioration During Transportation 

Efficient Transportation Planning Optimal Objective Value's (𝑍3
∗) 

𝑥13 = 0.096, 𝑥22 = 0.072, 𝑥23 = 0.096, 𝑥24 = 0.0345, 

𝑥31 = 0.022, 𝑥34 = 0.1155 

0.0126295 

 

VII. CONCLUSION 

This paper investigates a novel category of multiobjective, multi-level mathematical models known as the solid 

transportation framework with multiple goals under uncertain parameters and the multiobjective multi-level solid 

transportation model with FFP. To begin with, we convert these models into deterministic models using the expected value 

approach and new score fermatean fuzzy programming approach with FFE. Additionally, the MOMLSTPWFF model is treated 

as a single-purpose role model to minimize three distinct objectives: total transportation costs, total transportation time, and the 

cost associated with transportation deterioration. The best way to address the transportation issue is to determine it using Lingo 
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20 software. A numerical example is also presented in this research to validate the effectiveness of this mathematical 

programming approach.  
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Table 1: List of Abbreviations 

Abbreviations Full name 
STP Solid Transportation Problem 

TP Transportation Problem 

NWCM Northwest Corner Method 

LCM Least Cost Method 

VAM Vogel's Approximation Method 

MOSTP Multiobjective STP 

FFSs Fermatean Fuzzy Sets 

MOTP Multiobjective Transportation Problem 

FFNs Fermatean Fuzzy Numbers 

MCDM Multi-criteria Decision Making 

MOGSTLP Multiobjective Green Solid Transportation-Location Problem 

MSMOFSTP Multi-Stage Multiobjective Fixed-charge STP 

MOGFDFTP Multiobjective Green Four Dimensional Fixed- charge Transportation Problem 

FMOTP Fuzzy Multiobjective Transportation Problem 

DEA Data Envelopment Analysis 

IVIF Interval-Valued Intuitionistic Fuzzy Sets 

FFMOTP Fermatean Fuzzy Multiobjective Transportation Problem 

MOMLSTPWFF Multiobjective Multi-Level STP With Fermatean Fuzzy 

MOMLST Multiobjective Multi-Level STP 

MOMLUST Multiobjective Multi-Level Uncertain STP  
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