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Abstract: In the past decade, a substantial increase in medical data from various sources, including wearable sensors, medical 

imaging, personal health records, and public health organizations, has propelled advancements in the medical sciences. The 

evolution of computational hardware, such as cloud computing, GPUs, FPGAs, and TPUs, has enabled the effective utilization 

of this vast amount of data. Consequently, sophisticated AI techniques have been developed to extract valuable insights from 

healthcare datasets. This article provides a comprehensive overview of recent developments in AI and biosensors within the 

medical and life sciences. The review highlights the role of machine learning in key areas such as medical imaging, precision 

medicine, and biosensors designed for the Internet of Things (IoT). Emphasis is placed on the latest progress in wearable 

biosensing technologies, where AI plays a pivotal role in monitoring electrophysiological and electrochemical signals and 

aiding in disease diagnosis. These advancements underscore the growing trend towards personalized medicine, offering 

precise and cost-efficient point-of-care treatment. 
 

Additionally, the article delves into the advancements in computing technologies, including accelerated AI, edge 

computing, and federated learning specifically tailored for medical data. The challenges associated with data-driven AI 

approaches, potential issues arising from biosensors and IoT-based healthcare, and distribution shifts among different data 

modalities are thoroughly explored. The discussion concludes with insights into future prospects in the field. 
 

Keywords: Artificial Intelligence, Elucidatable AI, Medical Imaging, Biosensors, Federated Learning, Domain Adaptation, 

Analytics Of Vast Datasets, and Extensive Language Models. 
 

I. INTRODUCTION 

Approximately 10% of the global Gross Domestic Product (GDP), equivalent to 10 trillion USD, is allocated to 

healthcare annually [1]. Recent technological advancements, particularly in data-driven methodologies and computational 

processing capabilities, have the potential to benefit both patients and the medical industry by mitigating substantial 

expenditures. The availability of extensive healthcare data from diverse sources, including Electronic Health Records (EHRs), 

genomics profiles, medical imaging, chemical and drug databases, presents an opportunity for leveraging analytical methods, 

particularly those based on deep learning Artificial Intelligence (AI), to create valuable clinical and medical applications 

capable of processing these voluminous datasets. Data-driven approaches hold promise in areas such as medical record 

digitization, clinical trials, diagnosis support, prognosis evaluation, and the development of optimal prevention and treatment 

strategies. Additionally, these methods contribute to advancements in precision medicine, drug discovery, and health policy. 

The evolution of computational infrastructure has empowered the generation, storage, analysis, and visualization of large, 

intricate, and dynamic datasets inherent in contemporary biomedical studies [2]. Clinical trials are exploring new treatment 

options, with artificial intelligence transitioning from theoretical studies to real-time applications over the past decade, thanks 

to the enhanced computational capacities of GPUs and TPUs. Methods like AutoML [4] and explainable artificial intelligence 

(XAI) [5] are making significant strides and have the potential to revolutionize current medical practices. However, despite 

these advancements, several challenges hinder the full realization of the potential of analytical methods in the healthcare sector. 

Critical challenges for data science in medicine include issues such as data collection, standardization of data formats, handling 

missing data values, establishing large and efficient computational infrastructure, and ensuring data privacy and security, 

among other considerations. 
 

To address the issue of limited sample sizes in medical images, one approach involves the use of generative models to 

produce high-quality synthetic medical images. A specific type of neural network, known as a Generative Adversarial Network 

(GAN), is capable of generating synthetic data, including Magnetic Resonance Imaging (MRI) scans or positron emission 

tomography (PET)-scan images, by utilizing computed tomography (CT) scans. Regardless of the size, a subset of images is 
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essentially a subset of the universal set. Generative models leverage this smaller subset to learn the probability distribution of 

the overall training set. Once representative features are extracted, the model can generate high-quality synthetic images by 

sampling from this learned probability distribution. These synthetic images, in turn, can be employed to construct generalized 

models for medical image analysis applicable to various clinical scenarios. The interconnected nature of biomedical data stands 

out as one of its paramount characteristics, often represented in the form of graphs. Employing graph machine learning enables 

the modeling of unstructured multimodal datasets, allowing for the exploration of more intricate relationships between diseases 

and patients. This approach proves valuable in understanding tumor microenvironments, predicting drug responses, and 

exploring repurposing possibilities. Furthermore, when coupled with attention mechanisms, graph machine learning may offer 

machine learning models that are more interpretable compared to conventional black-box models.  
 

A recent groundbreaking achievement in artificial intelligence is exemplified by the Alphafold2 system, which 

successfully predicts the three-dimensional structure of proteins based solely on their amino acid sequences. Notably, 

Alphafold2 emerged victorious in the Critical Assessment of Structure Prediction (CASP), a global event for protein structure 

prediction held since 1994. Meta AI has also made strides in this domain, developing an AI system capable of predicting 

structures for approximately 600 million proteins. However, the challenge lies in translating these accomplishments to in vivo 

situations. While AlphaFold2 excels at predicting unbound protein structures, practical applications often require predictions 

for protein-drug complexes, posing an ongoing question in the field. Significant progress has occurred in processing power and 

biosensor technologies. For instance, the utilization of parallel processing methods and robust GPU clusters like NVIDIA-

DGX enables the efficient processing of vast and intricate multi-dimensional biomedical datasets [9]. Furthermore, the 

integration of wearable electronics, including electronic tattoos (E-tattoos), Epidermal Electronics Systems (EES), and flexible 

electrochemical bioelectronics, along with machine learning algorithms, facilitates real-time monitoring of diverse biomarkers 

[10]. Given the active research interest in the integration of AI in healthcare, multiple surveys have explored this domain [11], 

[12], [13]. In [11], there is an in-depth discussion about incorporating medical sensors with artificial intelligence, covering 

various sensing systems and their application in medical decision-making. The survey in [12] focuses on wearable sensors for 

healthcare delivery, primarily examining them from a hardware perspective, and briefly touches on the advantages and 

challenges associated with AI. Recent work [13] delves into the utilization of AI in the Internet of Medical Things, exploring 

its diverse applications and algorithms, particularly in addressing various medical conditions. The survey presented in [14] 

centers around AutoML methods. 
 

Given the substantial advancements in AI for healthcare in recent years, providing an updated review is crucial for the 

community. This article presents a comprehensive survey of recent developments in data-driven methods within the healthcare 

domain. The focus is specifically on practical applications of artificial intelligence, biosensors, and computational 

infrastructure directly impacting clinical relevance. Evaluation of emerging methods with the potential to integrate into the 

healthcare industry, such as AutoML [15], explainable AI [16], and Federated learning [17], is a key aspect. The article also 

introduces existing clinical tools and emerging AI-based start-up companies while shedding light on the prevailing challenges 

in AI for healthcare and proposing potential solutions. It is important to note that the scope of this review excludes the use of 

AI in drug discovery, nano-medicine, and medical robotics. The survey is organized into various sections, starting with Section 

II, highlighting machine learning applications in different healthcare sectors. Sections III, IV, and V delve into AI-based 

clinical tools, start-up companies, big data analytics, and biosensors, respectively. Section VI discusses computational 

advances, federated learning, and edge computing. The article concludes with Section VII addressing recent challenges in AI 

for healthcare, along with potential solutions, and Section VIII serves as the conclusion of this comprehensive review. 

 

II. MACHINE LEARNING IN HEALTHCARE 

Data science and machine learning have demonstrated success in various computer vision domains, including self-driving cars, 

action recognition, image classification, and intelligent robots. These tasks are well-defined and verifiable, with known 

problems and solutions. However, healthcare-related applications introduce safety and security concerns, raising privacy 

issues. Unlike well-defined problems, healthcare tasks are often broad, complex, and challenging to verify. An example is 

assessing the risk of life-threatening diseases, such as those caused by the SARS-CoV-2 virus, where data science is employed 

to identify prognostic indicators from diverse genetic and physiological markers and symptoms [18]. Figure 1 illustrates an 

ecosystem for machine learning in healthcare tasks. Machine learning not only generates actionable insights for clinical 

practice but also offers recommendations for optimal health policies to governments and aids in expediting and enhancing drug 

discovery and design processes. Table 1 outlines established use cases for various machine learning applications in healthcare. 
 

A. Explainable Artificial Intelligence 

While machine learning models applied to biomedical data have the potential to yield clinically valuable insights, 

particularly in the case of deep learning, these models are often perceived as opaque ―black boxes‖ that are challenging for 

humans to comprehend [5]. This lack of transparency creates a bottleneck in the clinical adoption of machine learning findings, 
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as decisions directly impact patient health. One approach to enhance transparency in machine learning predictions involves 

emphasizing feature importance or visualizing features at different layers. This allows for analyzing each feature‘s significance 

in the prediction model, leading to a better understanding of predictions. An example of this method is the Grad-CAM 

visualization [19], which relies on gradients flowing into the final convolutional layer based on the target concept to construct a 

localization map highlighting crucial locations or heat maps in the image for concept prediction. Explainable models, or 

explainable artificial intelligence, are essential to instill trust among healthcare professionals. Explainable AI methods are 

categorized based on the complexity and extent of their interpretability, as outlined in a classification scheme [20]. The 

classification takes into account the level of dependencies in the AI model. Explainability encompasses various aspects, 

including interpretability, stability, robustness, and confidence. In an interpretable system, users can not only observe but also 

understand how inputs are mathematically transformed into outputs. A stable system is not easily misled by minor 

perturbations or noise in the input data. Confidence measures the likelihood of a particular event occurring, aiming to quantify 

the level of confidence in the decision-making process [21]. In the realm of complex deep learning models, interpretability 

tends to be lower, and there often exists a trade-off between accuracy and interpretability. Designing models that are easy to 

interpret is a potential avenue to address this challenge. However, this interpretability may come at the cost of compromising 

accuracy. In the realm of Explainable AI (XAI), highly complex and uninterpretable models with high accuracy are commonly 

employed, necessitating a separate set of algorithms for interpretation. Another approach to achieving explainability involves 

examining whether the model is agnostic or model-specific. Agnostic methods can be applied to any machine learning 

algorithm, including neural networks and support vector machines, while model-specific methods are tailored to interpret a 

specific model [22]. Considering human factors is crucial in enhancing model interpretability, involving collaboration with 

domain experts, such as medical professionals, to ensure the interpretability and comprehensibility of the model. The ongoing 

development of Explainable AI is expected to advance research in machine learning for healthcare, addressing critical 

challenges such as fairness, safety, security, transparency, privacy, and trust. 
 

a) Human And Machine Interpretable Visualizations 

A critical facet of Explainable AI involves employing human-interpretable visualizations that facilitate understanding 

the reasoning behind AI models. For instance, decision trees, rule lists, and other interpretable models can be visually presented 

in a manner easily comprehensible to humans. In addition to techniques for human interpretation, the integration of machine-

interpretable visualization techniques is equally significant in Explainable AI. These techniques enable AI models to elucidate 

their predictions or decisions in a way that other AI systems can readily understand. An illustration of a machine-interpretable 

visualization technique is SHAP (SHapley Additive exPlanations) [23], which is employed to explain the output of complex 

machine learning models, including deep neural networks. However, interpreting models with billions of parameters poses 

challenges, as is common in deep learning models. For example, visualizing the grad-cam heatmap for a dog may reveal 

concentration around the dog‘s ears, but interpreting such patterns can be challenging for humans, as deep learning models 

operate differently from human cognition. 
 

 
Figure 1: Machine Learning Ecosystem in the Healthcare Sector Machine learning techniques can be advantageous for 

pharmaceutical businesses, policy makers, and clinical decision support systems. 
 

b) Causal Inference 

Tasks related to health science require more than just predictions. In the presence of abundant data, many deep learning 

algorithms tend to focus solely on identifying correlations among variables, leading to predictions or classifications without 

providing explanations for the underlying causes. For these machine learning models to be practically applicable in daily 

clinical settings, it is imperative that they offer robust causal evidence. Several methods have been devised to transform the 

opaque nature of deep learning models into transparent ones. Examples include feature visualization [24], gradcam 
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visualization [25], regularization through causal graph discovery [26], causal-aware imputation employing learning missing 

data mechanisms [27], domain adaptation [28], and tools such as Shared Interest [29] and learning generalized policies [30]. 

Causality can be delineated in three distinct stages. The initial stage involves association, exemplified by the relationship 

between a training image and its corresponding label. The second stage is intervention, where the objective is to forecast 

outcomes by modifying the system, such as implementing a treatment plan or altering patient conditions. The final stage is 

counterfactual, predicting the output in an alternative condition and environment. Causal machine learning models play a 

pivotal role in providing guidance for making informed and timely interventions, prompting a reconsideration of various 

treatment regimens and anticipated outcomes. 
 

B. Machine Learning for Precision Medicine 

Conventional medical models have historically adopted a ‗one size fits all‘ approach, treating the average patient 

uniformly. The evolving field of precision medicine, however, embraces a personalized treatment paradigm that considers an 

individual patient‘s distinctive clinical, genetic, epigenetic, and environmental information. This approach is gaining 

prominence in healthcare, facilitated by the growing volume of medical data [31]. Figure 2 illustrates a conceptual diagram 

depicting precision medicine leveraging various data modalities. Data encompassing a patient‘s age, weight, blood pressure, 

medical history, and genomic sequences can be analyzed by algorithms to unveil hidden patterns and establish correlations 

between patient profiles and disease phenotypes. An example of a personalized drug response model is seen in the case of non-

small cell lung cancer patients [32], where the binding free energy of a drug-mutant complex, along with personal patient 

features (such as age, sex, smoking history, and medical history), was utilized to construct a tailored drug prediction model. 

Extreme learning machines were employed to predict drug responses into two classes with an impressive overall accuracy of 

95%, bolstered by including personal features. Personalized medicine finds application in treating complex diseases like 

cancer, heart disease, and diabetes [33]. If employed judiciously, this technology holds the potential to enhance healthcare 

performance and possibly mitigate disparities. 
 

C. AI in Remote Patient Monitoring 

The integration of edge artificial intelligence (machine learning on edge devices) with the Internet of Things (IoT) has 

facilitated the implementation of remote healthcare systems. These systems have the capability to monitor a patient‘s vital 

signs and other physiological parameters in real time, allowing patients to stay at home while the data is transmitted to the 

cloud [34]. Incorporating AI into smart devices democratizes healthcare by bringing AI-enabled health services, such as AI-

based clinical decision support, directly into patients‘ homes or remote healthcare settings [35]. The centralized data collected 

from patients can be utilized for knowledge discovery, enhancing disease prognosis, or enabling doctors to monitor patients 

and make/update prescriptions. Numerous commercial wearable devices offer services for measuring physiological parameters, 

including heart rate, ECG, and other variables, through smartwatches and biosensors. Targeted systems have also been 

proposed for various health conditions, such as diabetes [36], where devices can assist in insulin management [37], cardiac 

disease through ECG [38], sleep apnea monitoring [39], or generic monitoring platforms like smart-monitor [40] that provide a 

flexible system based on the patient‘s health circumstances. Machine learning methods can then be applied to these 

physiological signals to enable predictive health management. 
 

III. CLINICAL AI TOOLS AND EMERGING AI HEALTHCARE COMPANIES 

The central inquiry revolves around the timing of the integration of AI tools into routine clinical practice, specifically 

for addressing real-time health challenges such as enhancing diagnostic capabilities and clinical decision support systems [41]. 

While AI holds significant promise in overcoming crucial healthcare challenges, several issues need addressing regarding its 

implementation. This section explores some pragmatic AI tools within clinical settings, along with emerging healthcare 

companies leveraging AI-based solutions. 
 

A. AutoML 

Machine learning models have proven beneficial in the healthcare sector, leading to cost reductions and improved 

outcomes. However, the current utilization of these models remains limited, with only a few hospitals incorporating them [4]. 

The likely reason is that healthcare professionals often lack the expertise needed to build, deploy, and integrate these models 

into clinical workflows. Addressing this challenge, AutoML [42] has been developed to streamline the deployment of machine 

learning models in daily healthcare operations. AutoML automates essential steps, including feature selection, model selection, 

and hyper-parameter optimization. It reduces the dependency on data scientists or machine learning engineers and makes it 

more accessible for health professionals to develop machine learning models for clinical data. Typically, around 80% of a data 

scientist‘s time is dedicated to data preparation and feature engineering, tasks that often require domain knowledge experts 

[43]. The goal is to identify the most discriminative features that offer insights into the problem and address learning situations 

that are challenging for classifiers. Various machine learning frameworks have been created to streamline feature engineering 

processes involving selection, ranking, and optimization [44]. One widely used approach is expand-reduce, which applies 
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transformation functions to obtain optimal features, as implemented in [45]. Genetic programming, inspired by the concept of 

natural evolution and survival functions, has also been employed for feature construction and selection. 
  

 
Figure 2: A Conceptual Picture for Precision Medicine that shows How Many Data Modalities are Combined to Identify 

Characteristics and Treatment Strategies Unique to Each Patient 
 

B. AI Tools and Companies for Clinics  
The significant advancements in the era of machine learning and the development and implementation of computer-

aided diagnosis or AI tools in clinical practice face several challenges. Medical imaging [47] stands as a crucial diagnostic tool 

for various disorders, employing diverse modalities such as X-ray imaging, whole slide imaging, computed tomography (CT), 

ultrasound, Magnetic Resonance Imaging (MRI), and positron emission tomography (PET). Furthermore, numerous publicly 

available imaging and biological databases provide excellent opportunities for building AI systems. For instance, PathAI [48] 

utilizes AI methods to support pathologists in clinical diagnostics, clinical trials, and clinical translational research. Similarly, 

Viz.ai [49] is an AI-powered computer application designed to enhance care coordination by reducing time delays in clinical 

workflows. It employs AI to generate alerts promptly sent to clinicians for timely intervention. Additionally, Freenome [50] 

leverages AI for cancer screening, diagnostics, prevention, and improved cancer management. Table 2 enumerates companies 

entirely reliant on AI tools, empowering medical professionals to enhance patient outcomes. 
 

Table 1: AI’s broad classifications and uses in the healthcare sector. 

Category Specific Application 
Patient care  Diagnosis and Prognosis 

 Real-time case prioritization 

 Personalized medication 

 Electronic health records, Smart health 

Medical Imaging  Tumor segmentation and Detection 

 Early diagnosis and Imaging Biomarkers  

 Treatment effect monitoring 

Management  Public Health Policy 

 Market research 

 Forecasting (Pandemics) 

Biosensors  Remote health care 

 Real-time health monitoring 

 Soft computing 

Computational Biology  Drug Discovery and efficacy analysis 

 Single-cell analysis 

 Multi-omics data analysis 
 

a) SaMD: Software as a Medical Device 

 SaMD [51], Software as a Medical Device, is designed for one or more medical purposes and is distinct from physical 

medical equipment. Since 1995, the FDA has approved over 500 software packages/applications to aid doctors in various 

healthcare issues [52], significantly focusing on analyzing radiology images. In numerous medical imaging tasks, AI 

algorithms have demonstrated superior performance compared to humans, leading innovative companies to develop AI-based 

systems for analyzing radiology images and digital pathology slides. For instance, Chan et al. [53] developed a computer-aided 

diagnosis system for identifying micro-calcifications on mammograms, conducting pioneering observer performance research 

that illustrated the tool‘s enhancement of breast radiologists‘ ability to detect micro-calcifications. Refer to Table 1 for 
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additional examples. AI researchers and developers must have a comprehensive understanding of how clinicians prefer 

assistance in different clinical tasks. Constructing efficient AI solutions and producing interpretable results while considering 

practical considerations in clinical settings is imperative. If appropriately designed, validated, and implemented, effective data 

analytics from AI technologies can complement and support doctors‘ intelligence, enhancing accuracy, workflow, and, 

ultimately, patient care. 
 

IV. IMPLEMENTATIONS OF BIG DATA ANALYTICS IN HEALTHCARE 

 The healthcare system involves various stakeholders, including patients, doctors, hospitals, industry players, and 

policymakers, operating under stringent compliance regulations. Due to the vast amount of data generated at high speeds 

within the healthcare sector, it presents an ideal landscape for the application of big data analytics. Leveraging big data 

analytics in healthcare has the potential to facilitate personalized medicine, prompt interventions, improved health policy 

management, and more effective planning [65].Big data analytics systems in healthcare aim to collect, clean, extract, visualize, 

and analyze extensive datasets, often characterized by three key concepts: volume (large datasets), variety (highly 

dimensional/many attributes), and velocity (the speed at which data is generated, accessed, and analyzed). Healthcare datasets, 

typically large and complex, originating from diverse sources, provide valuable opportunities for big data platforms [66]. For 

instance, on average, a cancer patient generates 2GB of data annually in the form of images and medical records. Emerging 

experimental techniques like immunotherapy, targeted therapy, omics research, high throughput screening, and parallel 

synthesis [67] may generate even larger amounts of data, necessitating advanced data analytic methods. In Figure 3, the 

complex, high-dimensional data from wearable sensors (ECG, Electromyograms (EMG), Electroencephalograms (EEG)), 

imaging data (X-rays, CT-Scans, MRI), electronic health records, and multi-omics data (genome, proteome, and microbiome) 

are typically collected and stored at a central repository, where pre-processing and data cleaning occur. Missing values 

imputation methods may be employed for further processing using statistical and machine learning methods. Centralized and 

mobile applications can be developed for patients, clinicians, hospitals, government agencies, and global health organizations. 

For example, the FDA has approved Ziopatch [68], a device measuring heart rate and ECG signals.  
 

Multivariate statistical methods, such as principal component analysis and other clustering techniques, can be applied to 

identify patterns in large datasets. These patterns may reveal different disease states, mortality rates, and susceptible age 

groups, forecast future pandemics, and estimate economic costs [69]. 
 

A. Fusion of Multi-Modal Data: Debunking the Myth of Trash or Unearthing a Goldmine 

 Numerous quantities in the universe exhibit concurrent variations. Biological data, being inherently diverse, often 

necessitates an amalgamation of related datasets to unravel hidden dependencies within a complex biological system [70]. 

Nevertheless, the fusion of these multi-modal data sets can yield either valuable insights akin to a goldmine or inconclusive 

results akin to trash. Achieving meaningful outcomes requires a combination of domain knowledge and robust data engineering 

skills for efficient feature representation and subsequent analysis. For instance, a study [71] demonstrated that integrating 

histopathological, radiological, and clinicogenomics information enhances risk stratification for cancer patients. 
 

a) Heterogenous Data 

The extensive volumes of healthcare data generated daily, encompassing medical images, sensor data, medical histories, and 

genomic information, exhibit heterogeneity. Machine learning proves highly adept at analyzing multi-modal data, extracting 

valuable insights across three crucial domains: 

i) Diagnosis:  

 Machine learning, when applied to health records and medical images, plays a pivotal role in aiding the diagnosis of 

various disease states. 
 

ii) Prognosis:  

 Utilizing machine learning algorithms on the diverse data available for a patient enables the prediction of the anticipated 

development of a disease, particularly from its early stages. 
 

iii) Treatment:  

 Machine learning algorithms, particularly when applied to multi-modal data, can generate optimal treatment plans, 

offering valuable insights into personalized and effective healthcare strategies. 
 

Table 2: Hetrogenous Data 

Tool/Company Services 
Viz.ai [49] It aims to reduce delays and make the healthcare team react faster with Al solutions regarding decision-

making,  treatment plans, and prescription providers 

PathAI [49] It develops machine learning for pathologists to assist in diagnostics by reducing errors, specifically for cancer 

patients and personal treatment.  
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Buoy Health[54] A chatbot attends to a patient and records the history, symptoms, and other health concerns; then, it guides the 

patient to the appropriate health facility. It is developed by a team at Harvard Medical School to speed up and 

optimize the treatment cycle. 

Enlitic [55] Enlitic creates deep-learning radiology technologies. The company‘s deep learning engine analyses 

unstructured medical data to provide clinicians with improved insight into a patient‘s real-time demands.  

Freenome [50] It employs Al algorithms for cancer screenings, diagnostics, and blood work to identify cancer early and 

suggest innovative treatments.  

Beth Israel Deaconess 

Medical Center [56] 

It employs Al to diagnose blood disorders early. The robots were taught to detect germs using 25,000 blood 

sample photos. Machines learned to predict hazardous blood bacteria with 95% accuracy.  

Iterative Scopes [57] It uses Al for gastrointestinal diagnosis and therapy. They have submitted the first clinical study of their Al-

powered SKOUT tool to the FDA for assessment.  

VirtuSense [58] It employs Al sensors to monitor patients‘ activities and alert them about accidents. VST Alert can anticipate 

when a patient plans to get up and inform hospital services. 

Caption Health [59] It integrates Al and ultrasonography for illness detection. Al assists physicians through the scanning procedure 

in real time to collect early diagnosis results. 

BioXcel Therapeutics 

[60] 

It applies Al to develop immuno-oncology and neurological drugs. The company‘s medication initiative uses 

Al to uncover new uses for old pharmaceuticals.  

BERG [61] BERG is a clinical-stage, Al-powered biotechnology company taking a bold ‗Back to BiologyTM‘ approach to 

healthcare.  

Atomwise [62] Atomwise utilizes Al to accelerate small molecule drug discovery and explores new undruggable targets to 

make them druggable.  

XtalPi [63] XtalPi‘s ID4 platform combines Al, the cloud, and quantum physics to anticipate small-molecule medicinal 

characteristics.  

Deep Genomics[64] Its Al platform finds neuromuscular and neurodegenerative medication possibilities. ―Project Saturn‖ 

examines 69 billion cell molecules.  
 

Medical data frequently encompasses various data modalities, such as images, signals, text, and molecular structures, 

which may share inherent relationships. The advent of new machine learning and deep learning models allows for the 

integration of these diverse data sources, adopting a data-harmonization approach [72] and leading to the extraction of multi-

modal insights [73]. The derived multi-modal features can be employed to construct knowledge graphs, offering support for 

clinical decisions, understanding disease mechanisms [74], or providing visualization aids for orthopedic surgery [75], as 

depicted in Figure 3, illustrating diverse healthcare applications for patients, clinics, government, and global healthcare 

organizations. The integration of multiple data types can enhance clinicians‘ trust, as different data modalities contribute 

complementary information to describe treatment plans or disease processes. Figure 2 illustrates how various data modalities 

can be utilized for precision medicine. The primary objective of methods combining multimodal data is to unify data with 

values from different scales and distributions into a global feature space, ensuring more consistent representation [76]. It is 

crucial to note that, in many real-world scenarios, fusing data from diverse modalities might lead to a decrease in performance. 

Healthcare data are generated by highly complex systems and instruments involving biological, environmental, social, and 

psychological factors, among others [77]. These systems operate based on various underlying processes, dependent on a broad 

range of variables that may not always be accessible [78]. Additionally, the diversity among different data types, including the 

number of samples, scales, and research questions, complicates the learning process. In small clinical cohorts, the curse of 

dimensionality may also pose challenges [79]. 
 

B. Genomics Data Analysis 

 Genomic datasets generated through next-generation sequencing often comprise extensive raw data [80], necessitating 

big data analysis and computational methods. Examples include the Encyclopedia of DNA Elements (ENCODE) [81] gene 

annotation and expression data, the Cancer Therapeutics Response Portal (CTRP) [82] offering insights into small molecule 

actions for personalized drug discovery based on predictive biomarkers, the Cancer Cell Line Encyclopedia (CCLE) [83], and 

the Genomics of Drug Sensitivity in Cancer (GDSC) [84] database conducting large-scale molecular screens on panels of 

hundreds of characterized cancer cell lines. These examples illustrate the potential of modern machine learning algorithms to 

develop drug response predictors from molecular profiles. However, existing data resources pose challenges for reliably 

predicting drug resistance or response [85]. Analyses of independent cohorts may yield different conclusions, and 

inconsistencies between datasets, along with missing clinical information, can impede predictions. To address missing values, 

data imputation techniques can be applied, and the high dimensionality of the data can be managed through feature filtering 

techniques or sparse principal component analysis [86]. 



Yawar Hayat et al.  / IRJEMS, 3(1), 230-247, 2024 

237 

 
Figure 3: Healthcare Uses Big Data Analytics 

 

 Global health organizations, hospitals, doctors, governments, and patients may all benefit from learning from different 

data modalities in the big data world. Biomedical data can be visualized and analyzed using several machine-learning 

techniques. 
 

C. Medical Imaging 

 Deep learning has the capability to swiftly generate magnetic resonance (MRI) images directly from sensor data with 

partially observed measurements. Task-oriented reconstruction enables the reconstruction of specific image portions with high 

quality and a confidence score. Super-resolution images, constructed using deep learning techniques like convolutional neural 

networks (CNNs) for single-brain MR images or generative adversarial networks (GANs) for super-resolution, enhance the 

quality of images built from low-resolution counterparts [87]. In Figure 4, various applications of deep learning in medical 

imaging are illustrated. For MRI images, image synthesis involves generating new parametric images or tissue contrasts from a 

set of images acquired in the same session. Generative adversarial networks [88] can act as a data augmentation tool, especially 

in cases where medical datasets have limited samples. They have been employed to produce synthetic abnormal MRI images 

for brain tumors based on techniques like pix2pix [89], [90]. Image registration, a process transforming data from multiple 

photographs, different sensors, views, or depths into a unified coordinate system, is enhanced through deep learning for 

medical image registration, leading to improved accuracy and speed. Examples include deformable image registration, model-

to-image registration, and unsupervised end-to-end methods for deformable registration of 2D CT/MR images [91]. 
 

V. WEARABLE BIOSENSORS 

 Wearable biosensors are designed to measure electrophysiological and electrochemical signals originating from the 

body. These sensors capture electrical activities related to various biological processes, including heart activity (ECG), muscle 

activity (EMG), and sweat gland activity (Electro-Dermal Activity (EDA)). Extracting essential health information, these 

signals can be obtained from diagnostic machines or wearable sensors. Analytical methods applied to this data, such as 

principal component analysis, discrete cosine transforms, autoregressive methods, and wavelet transforms, enable the 

extraction of time and frequency domain features from physiological signals [92]. For instance, a bidirectional deep long short-

term memory (LSTM) network, based on wavelet transform, has been utilized to classify ECG signals [93], achieving an 

impressive accuracy of 99.39% on the MIT-BIH arrhythmia database [94]. Another example involves a feature model based on 

Fourier Transform and Wavelet, applied to classify patients with Alzheimer‘s Disease, Mild Cognitive Impairment, and 

Healthy subjects using EEG signals [95].In practical scenarios, medical signal data can be collected passively using wearable 

sensors, such as smartphones or smartwatches [100]. Traditionally, signals have been acquired through gel-electrodes placed 

on the body. Recent advancements in fabrication and electronics have led to the integration of bio-sensing electrodes into 

various devices, including eye-glasses [101], VR head-mounted displays [102], and textiles [97]. 
 

 
Figure 4: Medical Picture Construction can be Accelerated by Deep Learning, Which also Makes Medical Image Analysis 

and Visualization Easier 
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A. Epidermal Devices:  

 A new category of computing devices, called epidermal devices, enables the non-invasive capture of physiological 

signals through soft interactive tattoos [103], [104] (Figure 5). These devices can measure both electrophysiological signals 

[97], [104] and electrochemical signals in the body [105]. The availability of open-source prototyping kits and platforms, such 

as EMBody [106], Seeed, OpenBCI, Olimex, and BITalino, allows for the rapid prototyping of custom physiological sensing 

systems. Computational tools and AI-assisted approaches are actively explored to automate and customize the design of 

biosensing wearables. For example, Nittala et al. [98] developed a computational design tool with an integrated predictive 

model to optimize the design of multi-modal electrophysiological sensing devices. 
 

B. Machine Learning Techniques on Physiological Signals:  
 Applying machine learning and deep learning techniques to physiological sensing is a common approach. In human-

computer interaction, machine learning techniques are used to sense gestures from EMG signals [107] and identify moods from 

EDA, EOG, EMG, and ECG signals [102]. Deep learning approaches are commonly applied to ECG data for denoising [108], 

simulating signals, detecting heart-related anomalies [109], [110], emotion recognition [111], or assessing mental health by 

analyzing EEG signals and detecting psychiatric disorders [112]. Classen et al. [113] used machine learning to detect brain 

activity in clinically non-responsive, brain-injured individuals, predicting eventual recovery. 
 

VI. COMPUTATIONAL ADVANCES 

 Advances in computer hardware and architectures are crucial for processing highly complex scientific problems. The 

growth in fast processors, multicore chips, accelerators, memory designs, interconnections, FPGA-based processors, and GPUs 

with hundreds of cores has made computationally intensive applications, such as real-time image and video processing in 

healthcare, possible. 
 

A. Accelerated Artificial Intelligence: 

 Deep learning systems commonly leverage multiple-core graphical processing units (GPUs) for optimizing parallel 

matrix operations crucial to deep neural networks. An innovative approach to faster matrix multiplication using reinforcement 

learning was recently discovered [114]. Google introduced the tensor processing unit (TPU), an accelerated AI processor 

designed especially for its TensorFlow software [115]. The acceleration of deep neural network training can be achieved by 

either parallelizing the training of more examples or enhancing the speed of training for each example. Operations not 

accelerated by GPUs or TPUs, such as early data processing stages or input-output between devices or disks, need 

improvement for efficient training. Techniques like data echoing [116], which reuses intermediate outputs to reclaim idle 

capacity, can be beneficial in addressing these challenges. In the ongoing pursuit of AI leadership, model sizes have escalated 

from millions to billions of parameters, as seen in OpenAI GPT models. Google reported the GLaM model with over 1 trillion 

parameters (compared to GPT -3‘s 175 billion parameters) [117]. The primary challenges associated with these massive 

models are training costs and their deployment on smaller devices. Potential solutions include leveraging neural network 

compression techniques like knowledge distillation [118] or structural sparsity [119]. In this analogy, the smaller model 

(student) learns from the more extensive model (teacher). A survey in [120] presents efficient hardware architectures aimed at 

accelerating deep convolutional neural networks. 
 

 
Table 5: Wearable Biosensors: (a) tattoo-like biosensors that detect electrodermal activity (EDA) [96]. (b) a multimodal 

physiological sensing tattoo on the forearm that is capable of sensing ECG, EDA, and EMG signals [97]. (c) incorporating 

user-interface controls, such as touch buttons, into tattoos with biosensing capabilities [97]. (d) Multi-modal 

electrophysiological sensing device creation and optimization supported by artificial intelligence [98]. (e) Skin-conformable, 

ultra-thin strain sensors on a decal transfer substrate are used to identify minute changes in a person’s body [99]. 
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B. Edge Computing:  

 While healthcare datasets are typically large and complex, requiring significant computational resources often found in 

remote clusters, there is a growing need to process data locally for privacy and efficiency reasons. This local processing at the 

end nodes of a cluster, known as edge computing, allows edge devices or servers to handle data storage and processing. This 

approach can offer fast, secure, and real-time health analytics, enabling timely medical interventions. Edge computing-based 

AI models prove particularly beneficial in providing healthcare solutions to areas with limited connectivity and access, 

facilitating rapid data analysis from smart medical sensors. Ensuring the portability and compatibility of AI models for 

prototyping involves implementing them on low-power devices. For instance, Owais et al. [121] demonstrated the 

implementation of the U-Net segmentation model on the Intel Neural Compute Stick, showing that inference could be achieved 

on such devices with proper tuning and model modifications. While there might be a performance trade-off, experimental 

results on brain and heart MRI images exhibited promising segmentation performance, showcasing the potential of inference-

enabled devices for real-time clinical transformations in healthcare settings. 
 

C. Federated Learning:  

 Maintaining data privacy and protection is crucial for medical data, necessitating new model training frameworks that 

do not compromise the underlying data. Federated or Collaborative Learning [122] is one such approach, training algorithms 

across multiple edge devices or servers without sharing local data samples. This technique enables active collaboration among 

multiple parties, such as hospitals or research centers, to train algorithms without centralizing their datasets. Federated learning 

has proven effective in developing AI models for medical data from various locations, as demonstrated during the rapid global 

response to the COVID-19 pandemic. In situations where ethical and legal constraints impede the sharing of patient data across 

locations, federated learning serves as a viable alternative. For example, in [123], a federated learning model predicted future 

oxygen requirements for COVID-19 patients using clinical and radiology data without the need for centralized data sharing. 

Different federated learning frameworks employ various topologies, such as peer-to-peer or client-server, transforming 

stochastic gradient descent into federated stochastic gradient descent based on the chosen topology [124], [125]. 
 

 
Figure 6: Shows typical federated learning topologies. (A) Client-Server. (b) A client and another client. (c) Mix topology or 

federation of sub-federations 
 

 All client terminals in a client-server architecture are linked to a shared server, and updates are sent through the server. 

Clients can exchange training updates without relying on a centralized server when using a client-client topology. Both of the 

above-described phenomena exist in mix topology. 
 

VII. THE RECENT CHALLENGES IN AI FOR HEALTHCARE WITH POTENTIAL SOLUTIONS: 

 While AI holds tremendous promise for enhancing the healthcare industry, there exist challenges that impede its 

seamless integration into current healthcare systems. In this section, we delve into key issues and provide potential solutions to 

overcome these challenges for the betterment of healthcare. 
 

A. Data Issues: 

a) Data Availability and Access:  

 Ensuring success in data science within healthcare hinges on critical factors such as data availability and access. 

Challenges, including data quality, sample size, label disparities, and ethical concerns, must be effectively addressed to harness 

AI‘s full potential [126]. The foundational principle involves capturing clean, accurate, and properly formatted data for various 

healthcare applications. [127] offers insights into sharing biomedical data to fortify the role of AI. 
 

b) Automated Data Cleaning Processes:  

 Employing machine learning methods aids in automated labeling, anomaly detection, missing value imputation, and 

other data cleaning processes [128]. For instance, in [129], deep learning identifies bleeding events from electronic health 
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records. Automated scrubbing tools provided by IT vendors, leveraging logic rules, are another avenue for comparing, 

contrasting, and correcting large datasets. 
 

c) Dataset Size and Quality:  

 The perception that larger datasets are necessary for accurate predictions prevails, but this overlooks the importance of 

data quality, proper annotations, and consultation with healthcare experts. Robust machine learning models require well-

curated data generated with appropriate hypotheses and domain knowledge. 
 

d) Data Security: Prioritizing data security in healthcare organizations is paramount. Risks, such as data breaches, hacking, and 

ransomware incidents, can be mitigated using machine learning to analyze patterns, preventing similar attacks and adapting to 

changing behaviors [132]. 
 

e) Handling Complex Data:  

 Dealing with imbalanced, complex, unlabeled, and poorly understood data requires careful consideration of learning 

paradigms and evaluation metrics. Unsupervised or semi-supervised learning can be employed to address these challenges and 

generate hypotheses for understanding complex diseases and signaling pathway patterns [133].  
 

 
Figure 7: Domain Adaptation in Medical Imaging 

 

f) The Difficulties with Distribution Shifts and Various Data Format 

 Many clinical AI systems encounter challenges due to shifts in training and testing data distributions. To address these 

shifts, machine learning employs domain adaptation techniques. In this process, a neural network is trained on a source dataset 

(X) and is expected to achieve high accuracy on a target dataset (Y) with distinct data distributions between X and Y. Domain 

adaptation is categorized into three types: supervised, semi-supervised, and unsupervised learning, based on the nature of the 

data in the training dataset. In supervised adaptation, the target dataset is considerably smaller than the source dataset because 

the target domain data is labeled. Unsupervised learning utilizes unlabeled data from the target domain, while semi-supervised 

learning incorporates both labeled and unlabeled data from the target domain. Deep domain adaptation is recommended to 

address challenges such as insufficient labeled data. This approach leverages deep network features to enhance model 

performance. The three primary strategies in deep domain adaptation are discrepancy-based, reconstruction-based, and 

adversarial-based techniques. These strategies aim to align and adapt the model to the differences in data distributions between 

the source and target datasets. Challenges arise from the delicacy of co-adaptation and representation specificity in the 

transferable features in the context of a discrepancy-based approach. A study referenced as [134] highlights the effectiveness of 

fine-tuning in enhancing generalization ability. 
 

 In the fine-tuning process applied to a deep model, a base network is trained using source data, and the target network‘s 

initial ‗n‘ layers are directly employed. Subsequently, the remaining layers of the target network are randomly initialized and 

trained using a loss function based on the discrepancy. Depending on factors such as the size of the target dataset and its 

similarity to the source dataset, the initial layers may undergo fine-tuning or be frozen during the training procedure. Another 

deep domain adaptation technique, reconstruction-based domain adaptation, utilizes an autoencoder to minimize reconstruction 

error and acquire transferable, domain-invariant representations for aligning the discrepancies between domains. Stacked Auto 

Encoders (SAEs) offer a high-level representation of source and target domain data [136]. To address computational expenses 
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associated with SAEs, a marginalized version, mSDA, which doesn‘t require stochastic gradient descent, was introduced in 

[137]. Transfer learning with deep autoencoders (TLDA) [138] employs a softmax loss to encode label information from the 

source domain. 
 

 In contrast, the embedding encoding layer utilizes the KL divergence to minimize the distribution distance between 

domains. Generative Adversarial Networks (GANs) play a crucial role in obtaining transferable and domain-invariant 

characteristics by minimizing distribution discrepancies between domains. GANs are also integrated into adversarial domain 

adaptation techniques [139]. CoGAN, proposed in [140], generates synthetic target data and associates it with synthetic source 

data. In [141], a method for simulated-unsupervised learning was introduced, where the focus was on minimizing adversarial 

and self-regularization losses. This approach utilized unlabeled real data to augment the realism of synthetic images. 
 

B. Challenges in Medical Imaging 
 Medical imaging represents a highly transformative domain where AI has made significant strides, but it is not without 

its set of challenges [142]. One notable challenge arises from the three-dimensional nature of medical images. Processing these 

3D volumes with three-dimensional convolutional neural networks (3D CNNs) demands increased memory and computational 

time. While researchers commonly treat 3D CNNs as stacks of 2D CNNs, introducing an additional dimension imposes 

additional constraints. 
 

 Privacy concerns are another critical issue in medical imaging. Although many deep learning models are constructed 

using anonymized public data, this approach doesn‘t offer a permanent solution to address privacy-related problems in medical 

imaging. When datasets are made public, there are inherent risks associated with potential leaks of patient privacy [143]. The 

high diversity of clinical scenarios adds another layer of complexity. Medical imaging serves various clinical purposes, 

including disease detection, localization, classification, surveillance, and even data quantification, such as pediatric bone age 

prediction [144]. Given the multitude of clinical activities involved in medical imaging, it becomes challenging for a single 

individual or model to effectively manage all these operations using current methodologies. The path forward involves 

developing task-aware deep-learning solutions to address these diverse clinical challenges. 
 

 Another significant hurdle in the field of medical imaging is the lack of transparency in algorithms and the challenges 

associated with validation and testing procedures. AI-based applications exhibit variations from data ingestion to output, and 

there is currently no standardized procedure in place. For instance, algorithms with comparable performance may adopt 

different strategies to address the same problem, necessitating specific pre-processing techniques before inference. This 

diversity complicates scalability, particularly in commercial AI-based products, as each application may demand its dedicated 

server or virtual environment. Ensuring the algorithm‘s transferability poses an additional challenge due to strict medical 

regulations in different nations. Unfortunately, no statistical method is available to evaluate the algorithm‘s transferability. One 

notable initiative addressing this challenge is Stanford University‘s ‗medical-imagenet‘ project, involving petabyte-scale 

datasets of radiology and pathology images integrated with genomics and electronic health record information. This project 

aims to facilitate the rapid development of computer vision systems (Stanford-AIMI). Addressing the challenge of limited large 

datasets in medical imaging can be achieved through image synthesis and data augmentation. Generalization of models may be 

challenging as the distribution of training data, often composed of high-quality images, may differ from real-world clinical 

data. This discrepancy can lead to unexpected results in deep learning models. Techniques such as transfer learning, fine-

tuning, or pre-training can be employed to mitigate this issue [145]. Transfer learning utilizes pre-trained weights from a 

network on a similar task, and greater emphasis on unsupervised machine learning models may be necessary to overcome 

sample size limitations. Figure 7 illustrates the applications of domain adaptation for image segmentation tasks. 
 

C. Biosensors and Flexible Bioelectronics: A Way Forward 

 Despite notable progress in recent years, several significant challenges remain to be addressed before AI biosensors for 

Internet of Things (IoT)-based applications reach commercial maturity. A crucial element for commercial applications is the 

incorporation of flexible bioelectronic materials. Given the natural elasticity and flexibility of the human body and its internal 

organisms, integrating electronics into platforms made of flexible materials becomes essential. Current soft wearables placed 

on the skin primarily rely on capturing physiological signals and transmitting them to an external computing infrastructure 

(e.g., mobile devices, laptops). Flexible bioelectronics offers advantages in aligning with the human body and organs (such as 

skin, eyes, and muscles) while minimizing mechanical damage to tissues and reducing adverse effects after long-term 

integration due to its exceptionally flexible mechanical properties. Medical AI biosensors are poised to play a crucial role in 

shaping future technologies, particularly with the aid of nanotechnology. These biosensors will continue to progress in terms of 

miniaturization, scalability, low power consumption, affordability, high sensitivity, multifunctionality, safety, non-toxicity, and 

degradation [146]. 
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Figure 8: Black-Box Model for AI 

 

 The predictions can be interpreted using algorithms such as causal inference, feature visualisation, or Explainable AI. 

The Gradcams visualization can be used to highlight significant areas that can increase healthcare practitioners‘ trust. 
 

D. Adaptability 

 A prevalent issue in the realm of ML-enhanced biosensors is the limited presence of adaptive learning capabilities. 

Presently, many biosensors augmented with machine learning lack the ability to adapt and learn from their surroundings, 

relying solely on manually input training sets. Adaptive learning in biosensors allows them to continually enhance and 

optimize their performance by learning from their environment, contrasting with non-adaptive systems. The adoption of 

adaptable models has the potential to reduce the likelihood of critical errors and erroneous outcomes, which can be a concern 

with fixed models. While non-adaptive ML models might excel in local performance, there is a potential trade-off in terms of 

generalizability, especially in clinical applications. Adaptive learning serves as a viable solution to address this conflict, 

providing the flexibility needed for robust and contextually relevant performance in various scenarios. 
 

E. Big Data in Smart Sensors 

 Implementing a smart sensor system that relies on vast datasets and sophisticated algorithms presents a significant 

challenge, particularly regarding the platform for data processing and storage. Cloud computing has recently been a preferred 

choice for processing sensor signals due to its superior computational power and expansive data storage capabilities. 

Integrating cloud and biosensors is not a novel concept, especially in monitoring applications where the volume of data 

continually expands. However, the direct connection of numerous sensors to the cloud can be prohibitively expensive and 

sluggish, primarily due to the exponential growth in the number of sensors. To address this, edge computing has emerged as a 

solution in recent years. Unlike a centralized data center, edge computing facilitates data processing at distributed edge devices. 

It offers advantages such as enhanced computational efficiency, swift network processing, and cost-effectiveness. As a result, 

cutting-edge biosensors are likely to leverage this innovative technology.  
 

F. Opening the Black Box of Deep Learning 

 A significant challenge in implementing AI lies in the opaque nature of deep learning models, particularly in critical 

healthcare scenarios where complete reliance on model predictions is not feasible. The need for interpretable and transparent 

models becomes crucial for making informed healthcare decisions. As input data traverses through the layers of a neural 

network, it undergoes compression, generating predictors for the target label. Max-pooling is applied at each layer, and certain 

neurons are dropped out in the final layers to prevent overfitting. Due to these compressed representations, explaining 

predictions at each level becomes challenging. However, obtaining a high-level understanding of the model‘s inner workings is 

still possible. In our opinion, complex deep learning models, comprising hundreds of millions of parameters, are nearly 

impossible to interpret comprehensively. In Figure 8, various methods used to elucidate the workings of deep learning models 

are illustrated. These methods offer an explanation of predictions to a certain extent without compromising accuracy. There 

exists a trade-off between accuracy and explainable AI, contingent on the specific problem at hand. An intriguing study [147] 

introduced the information bottleneck [148] to shed light on the functioning of deep neural networks. The information bound, a 

theoretical limit proposed by [148], represents the optimal point at which the model performs best given a set of features, with 

no further compression possible. The study suggests that during most training epochs, the model focuses on learning efficient 

representations of the input, and the compression of representations initiates when the training error starts to decrease. As the 

model converges layer by layer, the last layer retains only the most relevant features for predicting the output label. 
 

Table 3: Healthcare Applications of ChatGPT. 

Application Description Advantages Disadvantages 
Patient 

communication 

ChatGPT can be used to communicate with 

patients and provide them with general 

medical advice. This can help reduce the 

Provides immediate medical 

advice, is available 24/7, and 

can handle large volumes of 

It may not be able to replace human 

interaction and empathy fully, may not 

be able to handle complex or critical 
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workload on healthcare providers and 

improve patient satisfaction. 

inquiries simultaneously. 

 

cases, and raises concerns about 

patient privacy and confidentiality.  

Telemedicine It can facilitate virtual consultations 

between patients and healthcare providers.  

By providing patients with access to 

medical advice and expertise, ChatGPT can 

help improve healthcare access and 

outcomes, particularly in rural or under-

served areas.  

Improve healthcare access, 

reduce travel costs and wait 

times, and increase patient 

engagement. 

It may not be suitable for all types of 

medical consultations, may not be able 

to perform physical exams or provide 

hands-on care, and raises concerns 

about patient privacy and security.  

Medical 

education 

It can be used as a tool for medical 

education, providing students and 

healthcare professionals with access to 

medical information and resources. By 

analyzing medical data and answering 

questions, It can improve medical 

knowledge and training.  

Improves medical education 

accessibility, personalizes the 

learning experience, and can be 

used for quick reference and 

knowledge consolidation. 

 

May not be able to provide hands-on 

training, raises concerns about patient 

privacy and confidentiality,  

may perpetuate health disparities for 

students or institutions who do not 

have access to the technology or 

resources. 

Medical 

research 

ChatGPT can be used in medical research 

to analyze large amounts of medical data 

and identify new patterns and trends. 

Enables faster and more 

efficient analysis of large 

amounts of data to identify 

previously unknown correlations 

and patterns.  

It may require significant computing 

resources and expertise and may not 

be able to fully replace human 

researchers and medical experts. 

Diagnosis 

support 

It can assist healthcare providers in 

diagnosing diseases by analyzing patient 

symptoms, medical history, and other data.  

Improves the accuracy and 

consistency of diagnoses, saves 

time, reduces errors, and can 

support rare and complex cases.  

It may not be able to fully replace 

human diagnostic skills, expertise, and 

all clinical factors. 

 

G. Model Fairness and Accountability  

 An inherent challenge in deploying biosensors with AI lies in ensuring unbiased outcomes. Studies [149] [150] have 

indicated that ML algorithms may exhibit disparities in outcomes among different population groups, particularly those already 

marginalized in society. Addressing this challenge requires several strategic measures when developing ML applications 

utilizing biosensors. These may involve consciously including diversity in the data collection process and establishing robust 

policies for post-application performance audits to assess the impact on vulnerable communities. From a technical standpoint, 

it is crucial to monitor model performance logging for performance drift detection. Implementing such procedures in the 

deployment and monitoring of biosensors using AI applications is essential for instilling confidence in the services provided 

among healthcare professionals and patients. 
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