
IRJEMS International Research Journal of Economics and Management Studies

Published by Eternal Scientific Publications

ISSN: 2583 – 5238 / Volume 4 Issue 3 March 2025 / Pg. No: 266-281

Paper Id: IRJEMS-V4I3P130, Doi: 10.56472/25835238/IRJEMS-V4I3P130

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/2.0/)

Original Article

Dependent Tasks Verification-Aware Task Scheduling and

Resource Allocation in Cloud Devops Using Obl-Fuzzy and

Smrnn

1Sai Sandeep Ogety
1Cloud Computing & DevOps Specialist, Independent Researcher, Raleigh, NC, USA.

Received Date: 04 March 2025 Revised Date: 22 March 2025 Accepted Date: 25 March 2025 Published Date: 27 March 2025

Abstract: In Cloud Computing (CC), Task Scheduling (TS) involves assigning tasks to suitable resources, while Resource

Allocation (RA) focuses on efficiently distributing cloud resources for optimal utilization. Nevertheless, the prevailing studies

didn’t perform dependent task verification, which might increase the Continuous Integration/Continuous Deployment (CI/CD)

cycles. Thus, Offset Broken Line– Fuzzy (OBL-Fuzzy) and Sinusoidal Maxsig Recurrent Neural Network (SMRNN)-enabled

dependent tasks verification-aware TS and RA in cloud Development Operations (DevOps) are presented in this paper.

Primarily, the graph is constructed for the DevOps application by using Exponential Coffman Kahn's Directed Acyclic Graph

(ECK-DAG). Then, workflow assignment, attribute extraction, clustering by Elbow Cohen's Density-Based Spatial Clustering of

Applications with Noise (ECDBSCAN), workflow fragmentation, and Load balancing by Addax Rastrigrin Optimization

Algorithm (AROA) are performed. Further, the Merkle tree is constructed for the fragmented workflows using HEX-Gini-

BLOOM Merkle-Tree (HGB-MT). Afterward, the constructed Merkle tree is checked with the constructed graphs. The tasks are

scheduled if it is verified; otherwise, the task request is rejected. Then, the dependent tasks' status is checked in the HGB-MT; if

any dependent tasks are pending, then the least priority is given to that task. Next, by employing OBL-Fuzzy, the tasks are

scheduled. Finally, by using AROA, the resources are allocated. As per the results, the proposed model achieved a high accuracy

of 99%.

Keywords: Task scheduling, Resource Allocation, Development Operations (DevOps), Continuous Integration/Continuous

Deployment (CI/CD), Virtual Machine (VM) load prediction, Elbow Cohen's Density-Based Spatial Clustering of Applications

with Noise (ECDBSCAN), and Load balancing.

I. INTRODUCTION

Currently, CC is gaining major attention to handle dynamic computing tasks and streamline the automation of software

development/DevOps (Buttar et al., 2023). Here, the TS process assigns tasks to available Virtual Machine (VM) regarding

priority (Dreibholz & Mazumdar, 2023) (Sharma et al., 2022). Similarly, RA concentrates on distributing cloud resources based

on the demands of various applications (Liu et al., 2023). Nevertheless, due to poor RA, resource underutilization may occur.

Thus, many innovative techniques are introduced to schedule the tasks and allocate the resources (Shafiq et al., 2021).

A hybrid particle swarm algorithm, Genetic Algorithm (GA), and Ant Colony Optimization (ACO) were introduced for

TS in existing studies (Fu et al., 2021) (Houssein et al., 2021). Similarly, Actor-Critic Deep Reinforcement Learning was

introduced for efficient RA (Chen et al., 2021a). Similarly, for RA, Nondominated Sorting GA with the Elite Strategy (NSGA-

II) and Whale Optimization Algorithm (WOA) were utilized (Chen et al., 2021) (Jayaprakash et al., 2021). Nevertheless, the

existing studies didn’t perform dependent task verification, leading to increased CI/CD cycles. Thus, this paper proposes a

dependent task verification-aware TS and RA in cloud DevOps.

A) Problem Statement

➢ None of the prevailing works concentrated on dependent task verification, which might increase the CI/CD cycles.

➢ In the existing (Shi & Lin, 2022), RA was performed without considering the load of the VM.

➢ Due to the huge number of task requests, the collision might present in VMs (Singh et al., 2021).

➢ Most prevailing works didn’t differentiate the task before assigning it to the VM.

B) Objectives

➢ Dependent task status is checked in HGB-MT; if any dependent tasks are pending, then the task is given the least priority.

➢ SMRNN is introduced to predict the load of VMs.

➢ AROA is established to load balance the workflow requests.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

267

➢ ECDBSCAN is utilized to cluster similar workflows to avoid mismatched RA.

This remaining part is arranged as follows: the existing literature is illustrated in Section 2, the proposed methodology is

discussed in Section 3, the result is conveyed in Section 4, and lastly, the proposed model is concluded with future work in

Section 5.

II. LITERATURE SURVEY

(Shi & Lin, 2022) established VM-RA model in CC. Here, for RA, the multi-objective optimization GA was utilized. The

model attained improved computational performance. Nevertheless, the load of the VM was not focused. Therefore, the waiting

time for tasks was increased.

(Singh et al., 2021) Recommended RA and TS framework in CC. The swarm-centric ant colony optimization was utilized

for TS and RA. Regarding Quality of Service (QoS), the research performed better. However, owing to the huge number of task

requests, the collision might present in VMs.

(Belgacem et al., 2022) Discovered the RA model in CC. The Intelligent Multi-Agent system and Reinforcement Learning

Method (IMARM) were allocated resources here. The model obtained superior outcomes regarding fault tolerance. Still, for

unpredictable cloud environments, this work provided poor performance.

(Kaur Walia et al., 2021) Presented the TS approach in the cloud. Here, a hybrid GA and Flower Pollination-centric

Algorithm (FPA) were used for TS. Low energy consumption was attained in this study. Nevertheless, the research had higher

computational overhead and longer decision-making time.

(Pirozmand et al., 2021) Offered TS model in CC. Here, for TS, the Energy-Conscious Scheduling Heuristic- GA was

employed. The model consumed less energy. The model might struggle to maintain scalability as the number of tasks increases.

III. PROPOSED FRAMEWORK

Here, to allocate the resources, the AROA is introduced. In Figure 1, the diagrammatic layout of the proposed model is

displayed.

Figure 1: Diagrammatic layout of the proposed model

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

268

A) DevOps Application

Initially, for RA, the tasks of DevOps applications are provided. It is defined as o .

B) Graph Construction

Next, by using ECK-DAG, the graph is constructed for o . Directed Acyclic Graph (DAG) efficiently models the data

flow in DevOps applications. The computational complexity of DAG is increased if the graph has a huge number of nodes and

edges. Hence, Exponential Coffman Kahn's (ECK) technique is used.

In DAG, the DevOps application modules are considered nodes ()
g , and the links ()e between the DevOps application

modules are indicated as edges () .

()),,2,1(,,,, 321 HgwhereHg  ==  (1)

() () () () () ,,,,,,,,,, 5443423121  = (2)

Here,),,2,1(Hg = implies the number of nodes. The topological sorting is performed based on ECK. Coffman

Kahn's technique identifies and processes nodes with an in-degree 0. Here, the exponential function is used to manage the

complex scenarios, thus achieving the desired topological ordering ()odTop .

()54231 ,,,, =odTop (3)

Next, the adjacency matrix ()Adj is estimated as,



























=

00000

0000

0000

0000

000

5

54

43

32

211

54321













Adj (4)

The constructed graph is indicated as G .

C) Workflow Assignment

The workflows ()f are assigned to the DevOps users G . The assigned workflows are specified as  .

D) Attribute Extraction

The attributes, such as Job ID, Namespace, File size distributions, and so on, are extracted from the  . The extracted

attributes are signified as
()ax

.

E) Clustering

The
()f

 are clustered by using ECDBSCAN based on
()ax

. Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) excellently clusters the workflow regarding the density of connections. Yet, improper calculation of epsilon

and minpts leads to under or over-clustering in DBSCAN. Consequently, the Elbow technique and Cohen's technique are used.

Mostly, based on the Elbow technique, the epsilon parameter
()

 is calculated.


=

−=
V

d x

da

a

ux
1 

 (5)

Here,

V indicates the number of clusters and du designates the centroid. Then, the clusters are formed based on the

minpts ()M , which are calculated by Cohen's technique.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

269

2

3

2

3

1

21

StSt

xx
M

+

−
=


 (6)

Where,

x describes the mean value of ()ax , and St states the standard deviation. Afterward, for identifying the

clusters, the core point ()C is computed.

MC =  (7)

Regarding ()C , () , and ()M , similar workflows ()f are clustered. The clustered workflows are signified as  .

Pseudocode for ECDBSCAN

Input: Workflow ()f

Output: Clustered workflow ()

Begin

 Initialize ()f , ()ax

 For each ()f

 Compute epsilon

 
=

−=
V

d x

da

a

ux
1 



 Form

2

3

2

3

1

21

StSt

xx
M

+

−
=



 Determine clusters by ()C

 MC = 

 Continue until convergence

 End For

 Obtain ()

End

Then, the workflow fragmentation is performed.

F) Workflow Fragmentation

Further, by employing OBL-Fuzzy, they ()

are fragmented. Fuzzy is capable of giving the most proficient solutions.

However, Fuzzy presents the tuning difficulty of the membership function. Thus, the Offset Broken Line membership function

is utilized.

a. Rule Generation

 creates fuzzy rules () , If-Then rules are employed.













==

==

==

==

⎯→⎯


ionfragmentatorthogonalandionfragmentatverticalthenifTif

processealternativthenITif

processrepetitivethenSTif

processconcurrentthenPTif



(8)

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

270

Here, T implies the tasks, P reveals parallel workflow, S denotes the similar process workflow, I represents the

independent workflow, and if states a different task and similar process workflow.

b. Membership Function

Next, the Offset Broken Line membership function is computed.




















+−

+−




+−

+−



=

q

qp
pq

q

pd

dc
cd

c

c























0

1

0

 (9)

Here,  states offset or center, and c , d , p , and q are constant values. The crisp data
()C

 are converted into
()

Fuzzification
()Fuz

.

)(→= CFuz (10)

Moreover, the () are converted into ()C in the defuzzification ()Def .

)(CDef →= (11)

The fragmented workflows are indicated as
hF .

G) Load Balancing

Afterward, by using the AROA, the workflow requests () are load-balanced. Addax Optimization Algorithm (AOA)

aims to strike a balance between exploring the search space for possible solutions. Nonetheless, AOA has local optima issues.

Thus, the Rastrigrin chaotic map is utilized.

The Addaxes population ()Y is initialized. Here, the workflow requests are considered as the initialized population.

mNmNsNN

mrsrr

ms

mNN

r

yyy

yyy

yyy

Y

Y

Y

Y



























=























⎯→⎯

,,1,

,,1,

,1,11,11















 (12)

)(,, sssrssr lowupperlowy −•+= (13)

Here, rY

denotes the

thr addax, sry , represents the
ths dimension in the search space, sr , implies the random number,

and slow and supper specify the lower and upper bounds, respectively. Then, the fitness function ()t is estimated, which

considers minimum response time ())min(res as fitness.

()

1

1

1

1

)(

)(

)(

min






























=





























=

NN

r

NN

r

Yt

Yt

Yt

t

t

t

rest









 (14)

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

271

Then, to locate the food sources, the addaxes conduct extensive searches. The new position ()1

,

pos

sry of addaxes is changed

as,

()srsrsrsrsr

pos

sr ySEyy ,,,,,

1

, −+= (15)



 

=
sr

pos

srsr

pos

sr

r
yelse

yttif
Y

,

1

,,

1

,
 (16)

Where srSE , signifies the selected area, sr , outlines the random value, and
1

,

pos

srt implies fitness ()1

,

pos

sry .

Next, the addaxes begin digging in shady areas. Here, the Rastrigrin chaotic map ()sr , is used. The new position

()2

,

pos

sry is determined as,

()  +−= 102cos10 ,

2

,, srsrsr yy 

 (17)

()
it

lowupper
yy ss

srsr

pos

sr

−
−+= ,,

2

, 21 (18)



 

=
sr

pos

srsr

pos

sr

r
yelse

yttif
Y

,

2

,,

2

,
 (19)

Here, it indicates the current iteration and
2

,

pos

srt signifies the fitness ()2

,

pos

sry . The load balanced workflow requests

are signified as iL .

H) Attribute Extraction

Then iL , the attributes like job id, file size distributions, and runtime distribution are extracted. Similarly, the attributes,

such as Memory, Speed, Million Instructions Per Second (MIPS), etc, are extracted from the cloud server ()serCl . The extracted

attributes are defined as ()Atr .

I) Merkle Tree Construction

Similarly, by using HGB-MT, the Merkle tree is constructed for
hF . Merkle Tree (MT) enables fast verification of large

data. Yet, for verifying all data, MT needs L network access. Thus, the HEX-Gini-BLOOM technique is included in MT.

The hashcode ()K is generated for each
hF by employing HEX-Gini-BLOOM ()W .

()()()  ()x

h

h KKKKFW ,,,,16exp1 321

12

'  →−=  −

 (20)

Here, ' indicates the hash function value and xK the number of generated hash. Then,
hF they are separated into leaf

hash ()laK , branch hash ()bnK , and root hash ()roK .

() () () xxla KKKKKKK +++= −)1(4321 ,,,  (21)

() () xxxxbn KKKKKKKKK ++++++= −−−)1()2()3(4321 ,,  (22)

() xxro KKKKKKK ++++++= −)1(4321 ,,  (23)

The constructed Merkle tree is represented as MT . Then, the MT

is checked with the G .





→

→
=

rejectedisrequestTaskGinexistsnotif

schedulingtaskPerformGinexistsif
VO

MT

MT




 (24)

Here, VO indicates the verification outcomes. Next, dependent task verification ()DV is done; here, the dependent

tasks status ()ft is checked in the MT ; if any dependent tasks are pending, then the least priority is given to that task.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

272

J) Task Scheduling

The tasks are scheduled by using OBL-Fuzzy to arrange the tasks based on priority based on ()DV , ()VO , and ()Atr

. In Section 3.6, the process of OBL-Fuzzy is explained. Here, the fuzzy rules ()Q are generated as,

















===

==

=

==

==

===

==

=

prioritylow
lowXlowspdlowMIPS

lowDpendingftif

prioritymedium

mediumX

mediumspdmediumMIPS

mediumDprocessinftif

priorityhigh
highXhighspdhighMIPS

highDcompletedftif

Q

&&&&

&&&&

&&&&

&&&&

&&&&

&&&&

 (25)

Here, D indicates file size,
spd

 implies speed, and X specifies memory. The scheduled tasks are represented as 

follows.

K) VM Load Prediction

Likewise, to reduce the waiting time for tasks, VM load is predicted.

L) Dataset

Mainly, to train the VM load prediction system, the “VM Workload Predictor” dataset is gathered and is denoted as 
~

.

M) Pre-Processing

Next, they 
~

 are pre-processed; initially, the duplicate values 
~

 are removed, and it is specified as upDD . Then,

missing values upDD are imputed ()MI and are written as,

k

DD
MI

up
= (26)

Here k is the number of upDD . Afterward, they ()MI are converted into numerical values ()llNu . Next, by using the

Z-score formula, they llNu are normalized. The normalized data ()w are given as,






 −

= ll
w

Nu
 (27)

Here,  the mean and standard deviation are designated, respectively, and the pre-processed data is denoted as
l .

N) Feature Extraction

Then
l , the features, such as timestamp, Central Processing Unit (CPU) core, CPU usage, memory usage, and so on,

are extracted and indicated fet .

O) Feature Selection

Optimal features are selected fet by employing AROA. Here, maximum classification accuracy is considered as a fitness

function. The selected features are defined as v follows.

P) Classification

The VM load is predicted based on v employing an SMRNN. Recurrent Neural Networks (RNNs) efficiently learn from

past experiences. Nevertheless, the RNNs suffer from vanishing gradient problems and low learning efficiency. Thus, in RNN,

the Sinusoidal initialization technique and Maxsig activation function are utilized. In Figure 2, the SMRNN classifier diagram is

displayed.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

273

Figure 2: SMRNN classifier

➢ Input Layer

The v is fed to the input layer. Later, the input layer operation outcomes ()nJ are subjected to the hidden layer.

➢ Hidden Layer

The hidden layer ()U is updated based on the current input and previous hidden state.

() BJUU n += −   ,1
 (28)

Here, 1−U specifies the previous hidden state,
  signifies the Maxsig activation function, B signifies the bias term,

and  determines Sinusoidal initialization-based weights.

()()nn JJ  ,max= (29)

()
~

2sin +⎯→⎯ RfqAmnJ
 (30)

Here,  designates the sigmoid function Am and fq indicates the amplitude and frequency, respectively, R implies

the random value, and 
~

 represents the phase offset.

➢ Output Layer

The output layer ()
jO provides VM load prediction outcomes.

()BUO j +=  (31)

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

274

The predicted VM load is signified as f .

Pseudocode for SMRNN

Input: Selected Features ()v

Output: Predicted VM load ()
f

Begin

 Initialize ()v , ()B

 For each ()v

 Perform input layer ()nJ

 Discover

 () BJUU n += −   ,1

 Compute

 ()()nn JJ  ,max=

 Find

 ()
~

2sin +⎯→⎯ RfqAmnJ

 Implement

 ()BUO j += 

 End For

 Obtain ()
f

End

The SMRNN excellently predicted the VM loads.

Q) Resource Allocation

The resources are allocated for the corresponding  by using AROA based on ()
f and ()Atr . Here, a high

utilization rate is considered as the fitness function. The allocated resources are defined as
A . The proposed model excellently

scheduled the tasks and allocated the resources in cloud DevOps.

IV. RESULT AND DISCUSSION

Here, the proposed method’s performance evaluation is done. Likewise, the proposed model is implemented in the

working platform of PYTHON.

A) Dataset Description

The proposed model is assessed by employing the “VM Workload Predictor” dataset. The dataset link is given in the

reference section. Likewise, this dataset consists of 869458 numbers of data. Among that, 80% (6,95,566) and 20% (1,73,891)

of data are used for training and testing, respectively.

B) Performance Validation

Here, the proposed techniques are compared with prevailing methods.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

275

(a)

(b)

Figure 3: Graphical representation regarding (a) energy consumption and (b) resource utilization

The graphical representation of the proposed and existing techniques' displayed in Figure 3. Here, the proposed AROA

consumed less energy of 7021 Joule and utilized a huge resource of 98.12% for 500 tasks. Nevertheless, limited performance

was attained by the existing techniques, such as AOA, Lion Optimization Algorithm (LOA), Coyote Optimization Algorithm

(COA), and Whale Optimization Algorithm (WOA).

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

276

(a)

(b)

Figure 4: Performance assessment regarding (a) response time and (b) makespan

Figure 4 displays a performance assessment of the proposed and prevailing techniques. For 400 numbers of tasks, the

proposed OBL-Fuzzy obtained a low response time of 2.8754s and a makespan of 0.0854s, while the prevailing Sigmoid Fuzzy,

Cubic Fuzzy, Triangular Fuzzy, and Gaussian Fuzzy attained poor performance.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

277

(a)

(b)

Figure 5: Comparative evaluation regarding (a) accuracy, precision, recall, (b) specificity, NPV

The comparative evaluation of the proposed and conventional methods is depicted in Figure 5. Regarding accuracy,

precision, recall, specificity, and Negative Predictive Value (NPV), the proposed SMRNN achieved 98.85%, 98.63%, 98.12%,

98.23%, and 98.56%; yet, the prevailing techniques like RNN, Convolutional Neural Network (CNN), Deep Belief Network

(DBN), and Deep Neural Network (DNN) attained limited performance.

Table 1: Rule generation time

Techniques Rule Generation Time (ms)
Proposed OBL-Fuzzy 987

Sigmoid Fuzzy 1245

Cubic Fuzzy 1754

Triangular Fuzzy 2086

Gaussian Fuzzy 2369

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

278

In Table 1, the rule generation time of the proposed and existing techniques is shown. The proposed OBL-Fuzzy took less

than 987ms for rule generation, whereas the existing Sigmoid Fuzzy, Cubic Fuzzy, Triangular Fuzzy, and Gaussian Fuzzy took

a huge amount of time.

(a)

(b)

Figure 6: Performance analysis regarding (a) latency, (b) throughput

The performance analysis of the proposed AROA and prevailing methods are depicted in Figure 6. For 100 tasks, the

proposed AROA obtained a low latency of 1.2101s and a high throughput of 3847kbps, while the prevailing techniques attained

poor performance.

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

279

Figure 7: Graph generation time

Figure 7 shows the graph generation time of the proposed and existing techniques. Regarding graph generation time, the

proposed ECK-DAG attained a low value of 3054ms, whereas the existing DAG, Weighted Graph (WG), Finite Graph (FG),

and Acyclic Graph (AG) had high time complexity.

Table 2: Clustering time

Methods Clustering Time (ms)
Proposed ECDBSCAN 24108

DBSCAN 28956

K-Means 33658

CLARA 38054

FCM 43625

The clustering times of the proposed and prevailing techniques are depicted in Table 2. For clustering, the proposed

ECDBSCAN took a less time of 24108ms, while the prevailing DBSCAN, K-Means, Clustering Large Applications (CLARA),

and Fuzzy C-Means (FCM) obtained an average clustering time of 36073.25ms.

Figure 8: Tree construction time

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

280

The tree construction time of the proposed and existing methods are displayed in Figure 8. Regarding tree construction

time, the proposed HGB-MT obtained less than 2108ms, while the prevailing MT, RT, HT, and BT attained maximum time.

C) Comparative Assessment

A comparative assessment is carried out for the proposed and related works.

Table 3: Comparative Analysis

Authors’ name Techniques
Response time

(s)
Makespan (s)

Energy

Consumption

(Joule)

Resource

Utilization

(%)
Proposed Model OBL-Fuzzy and AROA 1.8472 0.0584 5847 96.10

(Ben Alla et al.,

2021)

Dynamic Priority-Queue

(DPQ)
1.95 0.181 - -

(Kruekaew &

Kimpan, 2022)

Artificial Bee Colony (ABC)

with Q-learning
- 7.678 - -

(Nabi et al.,

2021)

Resource-aware Dynamic TS

Approach (RDTSA)
7.25 32.6 - -

(Fathalla et al.,

2021)
Best K-First-Fit (Best-KFF) - - - 53.18

(Goyal et al.,

2021)
WOA - - 8165.603 -

Table 3 displays the comparative assessment; here, the proposed OBL-Fuzzy attained a low response time of 1.8472s and

a low makespan of 0.181s. The proposed AROA obtained a low energy consumption of 5847Joule and a high resource utilization

of 96.10%. Nevertheless, poor performance was attained by the existing DPQ, ABC with Q-learning, RDTSA, Best-KFF, and

WOA.

V. CONCLUSION

Here, OBL-Fuzzy and SMRNN-based TS and RA in cloud DevOps are presented. Here, this study performed significant

processes, such as TS and RA. For 500 tasks, the proposed AROA consumed less energy of 7021Joule. Similarly, the proposed

SMRNN achieved a high accuracy and precision of 98.85% and 98.63%, respectively. Thus, the proposed model had high

efficiency. The proposed model failed to preserve workflow information and user authentication even though it concentrated on

improving the efficiency of TS and RA.

Future Work

Multi-factor authentication techniques will be introduced in the future to preserve the workflow information and perform user

authentication.

VI. REFERENCES
[1] Dataset link: https://github.com/kwananth/VMWorkloadPredictor

[2] Belgacem, A., Mahmoudi, S., & Kihl, M. (2022). Intelligent multi-agent reinforcement learning model for resource allocation in cloud computing. Journal

of King Saud University - Computer and Information Sciences, 34(6), 2391–2404. https://doi.org/10.1016/j.jksuci.2022.03.016
[3] Ben Alla, H., Ben Alla, S., Ezzati, A., & Touhafi, A. (2021). A novel multiclass priority algorithm for task scheduling in cloud computing. In Journal of

Supercomputing (Vol. 77, Issue 10). Springer US. https://doi.org/10.1007/s11227-021-03741-4

[4] Buttar, A. M., Khalid, A., Alenezi, M., Akbar, M. A., Rafi, S., Gumaei, A. H., & Riaz, M. T. (2023). Optimization of DevOps Transformation for Cloud-
Based Applications. Electronics (Switzerland), 12(2), 1–15. https://doi.org/10.3390/electronics12020357

[5] Chen, J., Wang, Y., & Liu, T. (2021). A proactive resource allocation method based on adaptive prediction of resource requests in cloud computing.

Eurasip Journal on Wireless Communications and Networking, 2021(1), 1–20. https://doi.org/10.1186/s13638-021-01912-8
[6] Chen, Z., Hu, J., Min, G., Luo, C., & El-Ghazawi, T. (2021 a). Adaptive and Efficient Resource Allocation in Cloud Datacenters Using Actor-Critic Deep

Reinforcement Learning. IEEE Transactions on Parallel and Distributed Systems, 1–14. https://doi.org/10.1109/TPDS.2021.3132422

[7] Dreibholz, T., & Mazumdar, S. (2023). Towards a lightweight task scheduling framework for cloud and edge platforms. Internet of Things (Netherlands),
21, 1–16. https://doi.org/10.1016/j.iot.2022.100651

[8] Fathalla, A., Li, K., & Salah, A. (2021). Best-KFF: a multi-objective preemptive resource allocation policy for cloud computing systems. Cluster

Computing, 25(1), 1–17. https://doi.org/10.1007/s10586-021-03407-z
[9] Fu, X., Sun, Y., Wang, H., & Li, H. (2021). Task scheduling of cloud computing based on hybrid particle swarm algorithm and genetic algorithm. Cluster

Computing, 1–10. https://doi.org/10.1007/s10586-020-03221-z

[10] Goyal, S., Bhushan, S., Kumar, Y., Rana, A. U. H. S., Bhutta, M. R., Ijaz, M. F., & Son, Y. (2021). An optimized framework for energy-resource allocation
in a cloud environment based on the whale optimization algorithm. Sensors, 21(5), 1–20. https://doi.org/10.3390/s21051583

[11] Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021). Task Scheduling in Cloud Computing based on Meta-heuristics: Review,
Taxonomy, Open Challenges, and Future Trends. Swarm and Evolutionary Computation, 62, 1–41. https://doi.org/10.1016/j.swevo.2021.100841

[12] Jayaprakash, S., Nagarajan, M. D., Prado, R. P. de, Subramanian, S., & Divakarachari, P. B. (2021). A systematic review of energy management strategies

for resource allocation in the cloud: Clustering, optimization and machine learning. Energies, 14(17), 1–18. https://doi.org/10.3390/en14175322
[13] Kaur Walia, N., Kaur, N., Alowaidi, M., Bhatia, K. S., Mishra, S., Sharma, N. K., Sharma, S. K., & Kaur, H. (2021). An Energy-Efficient Hybrid

Scheduling Algorithm for Task Scheduling in the Cloud Computing Environments. IEEE Access, 9, 1–13. https://doi.org/10.1109/ACCESS.2021.3105727

[14] Kruekaew, B., & Kimpan, W. (2022). Multi-Objective Task Scheduling Optimization for Load Balancing in Cloud Computing Environment Using Hybrid

Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025

281

Artificial Bee Colony Algorithm with Reinforcement Learning. IEEE Access, 10, 17803–17818. https://doi.org/10.1109/ACCESS.2022.3149955
[15] Liu, H., Chen, P., Ouyang, X., Gao, H., Yan, B., Grosso, P., & Zhao, Z. (2023). Robustness challenges in Reinforcement Learning based time-critical

cloud resource scheduling: A Meta-Learning based solution. Future Generation Computer Systems, 146, 18–33.

https://doi.org/10.1016/j.future.2023.03.029
[16] Nabi, S., Ibrahim, M., & Jimenez, J. M. (2021). DRALBA: Dynamic and Resource Aware Load Balanced Scheduling Approach for Cloud Computing.

IEEE Access, 9, 61283–61297. https://doi.org/10.1109/ACCESS.2021.3074145

[17] Pirozmand, P., Hosseinabadi, A. A. R., Farrokhzad, M., Sadeghilalimi, M., Mirkamali, S., & Slowik, A. (2021). Multi-objective hybrid genetic algorithm
for task scheduling problem in cloud computing. Neural Computing and Applications, 33(19), 1–14. https://doi.org/10.1007/s00521-021-06002-w

[18] Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., & Alzain, M. A. (2021). A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing

Applications. IEEE Access, 9, 41731–41744. https://doi.org/10.1109/ACCESS.2021.3065308
[19] Sharma, M., Kumar, M., & Samriya, J. K. (2022). An optimistic approach for task scheduling in cloud computing. International Journal of Information

Technology (Singapore), 14(6), 2951–2961. https://doi.org/10.1007/s41870-022-01045-1

[20] Shi, F., & Lin, J. (2022). Virtual Machine Resource Allocation Optimization in Cloud Computing Based on Multi-objective Genetic Algorithm.
Computational Intelligence and Neuroscience, 2022, 1–10. https://doi.org/10.1155/2022/7873131

[21] Singh, H., Bhasin, A., & Kaveri, P. R. (2021). QRAS: efficient resource allocation for task scheduling in cloud computing. SN Applied Sciences, 3(4), 1–

7. https://doi.org/10.1007/s42452-021-04489-5

