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Abstract: In Cloud Computing (CC), Task Scheduling (TS) involves assigning tasks to suitable resources, while Resource 

Allocation (RA) focuses on efficiently distributing cloud resources for optimal utilization. Nevertheless, the prevailing studies 

didn’t perform dependent task verification, which might increase the Continuous Integration/Continuous Deployment (CI/CD) 

cycles. Thus, Offset Broken Line– Fuzzy (OBL-Fuzzy) and Sinusoidal Maxsig Recurrent Neural Network (SMRNN)-enabled 

dependent tasks verification-aware TS and RA in cloud Development Operations (DevOps) are presented in this paper. 

Primarily, the graph is constructed for the DevOps application by using Exponential Coffman Kahn's Directed Acyclic Graph 

(ECK-DAG). Then, workflow assignment, attribute extraction, clustering by Elbow Cohen's Density-Based Spatial Clustering of 

Applications with Noise (ECDBSCAN), workflow fragmentation, and Load balancing by Addax Rastrigrin Optimization 

Algorithm (AROA) are performed. Further, the Merkle tree is constructed for the fragmented workflows using HEX-Gini-

BLOOM Merkle-Tree (HGB-MT). Afterward, the constructed Merkle tree is checked with the constructed graphs. The tasks are 

scheduled if it is verified; otherwise, the task request is rejected. Then, the dependent tasks' status is checked in the HGB-MT; if 

any dependent tasks are pending, then the least priority is given to that task. Next, by employing OBL-Fuzzy, the tasks are 

scheduled. Finally, by using AROA, the resources are allocated. As per the results, the proposed model achieved a high accuracy 

of 99%. 

 

Keywords: Task scheduling, Resource Allocation, Development Operations (DevOps), Continuous Integration/Continuous 

Deployment (CI/CD), Virtual Machine (VM) load prediction, Elbow Cohen's Density-Based Spatial Clustering of Applications 

with Noise (ECDBSCAN), and Load balancing. 

 

I. INTRODUCTION 

Currently, CC is gaining major attention to handle dynamic computing tasks and streamline the automation of software 

development/DevOps (Buttar et al., 2023). Here, the TS process assigns tasks to available Virtual Machine (VM) regarding 

priority (Dreibholz & Mazumdar, 2023) (Sharma et al., 2022). Similarly, RA concentrates on distributing cloud resources based 

on the demands of various applications (Liu et al., 2023). Nevertheless, due to poor RA, resource underutilization may occur. 

Thus, many innovative techniques are introduced to schedule the tasks and allocate the resources (Shafiq et al., 2021). 
 

A hybrid particle swarm algorithm, Genetic Algorithm (GA), and Ant Colony Optimization (ACO) were introduced for 

TS in existing studies (Fu et al., 2021) (Houssein et al., 2021). Similarly, Actor-Critic Deep Reinforcement Learning was 

introduced for efficient RA (Chen et al., 2021a). Similarly, for RA, Nondominated Sorting GA with the Elite Strategy (NSGA-

II) and Whale Optimization Algorithm (WOA) were utilized (Chen et al., 2021) (Jayaprakash et al., 2021). Nevertheless, the 

existing studies didn’t perform dependent task verification, leading to increased CI/CD cycles. Thus, this paper proposes a 

dependent task verification-aware TS and RA in cloud DevOps.  
 

A) Problem Statement 

➢ None of the prevailing works concentrated on dependent task verification, which might increase the CI/CD cycles. 

➢ In the existing (Shi & Lin, 2022), RA was performed without considering the load of the VM. 

➢ Due to the huge number of task requests, the collision might present in VMs (Singh et al., 2021). 

➢ Most prevailing works didn’t differentiate the task before assigning it to the VM. 
 

B) Objectives 

➢ Dependent task status is checked in HGB-MT; if any dependent tasks are pending, then the task is given the least priority. 

➢ SMRNN is introduced to predict the load of VMs. 

➢ AROA is established to load balance the workflow requests. 
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➢ ECDBSCAN is utilized to cluster similar workflows to avoid mismatched RA. 

This remaining part is arranged as follows: the existing literature is illustrated in Section 2, the proposed methodology is 

discussed in Section 3, the result is conveyed in Section 4, and lastly, the proposed model is concluded with future work in 

Section 5. 
 

II. LITERATURE SURVEY 

(Shi & Lin, 2022) established VM-RA model in CC. Here, for RA, the multi-objective optimization GA was utilized. The 

model attained improved computational performance. Nevertheless, the load of the VM was not focused. Therefore, the waiting 

time for tasks was increased. 
 

(Singh et al., 2021) Recommended RA and TS framework in CC. The swarm-centric ant colony optimization was utilized 

for TS and RA. Regarding Quality of Service (QoS), the research performed better. However, owing to the huge number of task 

requests, the collision might present in VMs. 
 

(Belgacem et al., 2022) Discovered the RA model in CC. The Intelligent Multi-Agent system and Reinforcement Learning 

Method (IMARM) were allocated resources here. The model obtained superior outcomes regarding fault tolerance. Still, for 

unpredictable cloud environments, this work provided poor performance. 
 

(Kaur Walia et al., 2021) Presented the TS approach in the cloud. Here, a hybrid GA and Flower Pollination-centric 

Algorithm (FPA) were used for TS. Low energy consumption was attained in this study. Nevertheless, the research had higher 

computational overhead and longer decision-making time. 
 

(Pirozmand et al., 2021) Offered TS model in CC. Here, for TS, the Energy-Conscious Scheduling Heuristic- GA was 

employed. The model consumed less energy. The model might struggle to maintain scalability as the number of tasks increases. 
 

III. PROPOSED FRAMEWORK 

Here, to allocate the resources, the AROA is introduced. In Figure 1, the diagrammatic layout of the proposed model is 

displayed. 

 
Figure 1: Diagrammatic layout of the proposed model 
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A) DevOps Application 

Initially, for RA, the tasks of DevOps applications are provided. It is defined as o . 
 

B) Graph Construction 

Next, by using ECK-DAG, the graph is constructed for o . Directed Acyclic Graph (DAG) efficiently models the data 

flow in DevOps applications. The computational complexity of DAG is increased if the graph has a huge number of nodes and 

edges. Hence, Exponential Coffman Kahn's (ECK) technique is used. 
 

In DAG, the DevOps application modules are considered nodes ( )
g , and the links ( )e  between the DevOps application 

modules are indicated as edges ( ) . 

( ) ),,2,1(,,,, 321 HgwhereHg  ==     (1) 

( ) ( ) ( ) ( ) ( ) ,,,,,,,,,, 5443423121  =    (2) 

 

Here, ),,2,1( Hg =  implies the number of nodes. The topological sorting is performed based on ECK. Coffman 

Kahn's technique identifies and processes nodes with an in-degree 0. Here, the exponential function is used to manage the 

complex scenarios, thus achieving the desired topological ordering ( )odTop . 

( )54231 ,,,, =odTop     (3) 

 

Next, the adjacency matrix ( )Adj  is estimated as, 
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The constructed graph is indicated as G . 

C) Workflow Assignment 

The workflows ( )f  are assigned to the DevOps users G . The assigned workflows are specified as  . 

D) Attribute Extraction 

The attributes, such as Job ID, Namespace, File size distributions, and so on, are extracted from the  . The extracted 

attributes are signified as 
( )ax

. 
 

E) Clustering 

The 
( )f

 are clustered by using ECDBSCAN based on 
( )ax

. Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) excellently clusters the workflow regarding the density of connections. Yet, improper calculation of epsilon 

and minpts leads to under or over-clustering in DBSCAN. Consequently, the Elbow technique and Cohen's technique are used. 
 

Mostly, based on the Elbow technique, the epsilon parameter
( )

 is calculated. 


=

−=
V

d x

da

a

ux
1 

      (5) 

Here,
 
V  indicates the number of clusters and du  designates the centroid. Then, the clusters are formed based on the 

minpts ( )M , which are calculated by Cohen's technique. 
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Where,
 

x  describes the mean value of ( )ax , and St  states the standard deviation. Afterward, for identifying the 

clusters, the core point ( )C  is computed.  

MC =        (7) 

Regarding ( )C , ( ) , and ( )M , similar workflows ( )f  are clustered. The clustered workflows are signified as  . 

Pseudocode for ECDBSCAN 

Input: Workflow ( )f  

Output: Clustered workflow ( )  

Begin 

 Initialize ( )f , ( )ax  

 For each ( )f  

  Compute epsilon 

   
=

−=
V

d x

da

a

ux
1 

  

  Form  
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−
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  Determine clusters by ( )C  

   MC =   

  Continue until convergence 

 End For 

 Obtain ( )  

End 

Then, the workflow fragmentation is performed. 
 

F) Workflow Fragmentation 

Further, by employing OBL-Fuzzy, they ( )
 
are fragmented. Fuzzy is capable of giving the most proficient solutions. 

However, Fuzzy presents the tuning difficulty of the membership function. Thus, the Offset Broken Line membership function 

is utilized. 
 

a. Rule Generation 

 creates fuzzy rules ( ) , If-Then rules are employed. 
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Here, T  implies the tasks, P  reveals parallel workflow, S  denotes the similar process workflow, I  represents the 

independent workflow, and if  states a different task and similar process workflow.  
 

b. Membership Function 

Next, the Offset Broken Line membership function is computed. 
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Here,   states offset or center, and c , d , p , and q  are constant values. The crisp data 
( )C

 are converted into 
( )

 

Fuzzification 
( )Fuz

. 

)( →= CFuz      (10) 

Moreover, the ( )  are converted into ( )C  in the defuzzification ( )Def . 

)( CDef →=     (11) 

The fragmented workflows are indicated as 
hF . 

 

G) Load Balancing 

Afterward, by using the AROA, the workflow requests ( )  are load-balanced. Addax Optimization Algorithm (AOA) 

aims to strike a balance between exploring the search space for possible solutions. Nonetheless, AOA has local optima issues. 

Thus, the Rastrigrin chaotic map is utilized. 
 

The Addaxes population ( )Y  is initialized. Here, the workflow requests are considered as the initialized population. 
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Here, rY
 
denotes the 

thr  addax, sry ,  represents the 
ths  dimension in the search space, sr ,  implies the random number, 

and slow  and supper  specify the lower and upper bounds, respectively. Then, the fitness function ( )t  is estimated, which 

considers minimum response time ( ))min(res  as fitness. 
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Then, to locate the food sources, the addaxes conduct extensive searches. The new position ( )1

,

pos

sry  of addaxes is changed 

as, 
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Where srSE ,  signifies the selected area, sr ,  outlines the random value, and 
1

,

pos

srt  implies fitness ( )1

,

pos

sry .  

Next, the addaxes begin digging in shady areas. Here, the Rastrigrin chaotic map ( )sr ,  is used. The new position 
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Here, it  indicates the current iteration and 
2

,

pos

srt  signifies the fitness ( )2

,

pos

sry . The load balanced workflow requests 

are signified as iL . 

 

H) Attribute Extraction 

Then iL , the attributes like job id, file size distributions, and runtime distribution are extracted. Similarly, the attributes, 

such as Memory, Speed, Million Instructions Per Second (MIPS), etc, are extracted from the cloud server ( )serCl . The extracted 

attributes are defined as ( )Atr . 

 

I) Merkle Tree Construction 

Similarly, by using HGB-MT, the Merkle tree is constructed for 
hF . Merkle Tree (MT) enables fast verification of large 

data. Yet, for verifying all data, MT needs L network access. Thus, the HEX-Gini-BLOOM technique is included in MT.  

The hashcode ( )K  is generated for each 
hF by employing HEX-Gini-BLOOM ( )W . 

( )( )( )  ( )x

h

h KKKKFW ,,,,16exp1 321

12

'  →−=  −

    (20) 

Here, '  indicates the hash function value and xK  the number of generated hash. Then, 
hF  they are separated into leaf 

hash ( )laK , branch hash ( )bnK , and root hash ( )roK . 

( ) ( ) ( ) xxla KKKKKKK +++= − )1(4321 ,,,      (21) 

( ) ( ) xxxxbn KKKKKKKKK ++++++= −−− )1()2()3(4321 ,,    (22) 

( ) xxro KKKKKKK ++++++= − )1(4321 ,,      (23) 

The constructed Merkle tree is represented as MT . Then, the MT
 
is checked with the G . 





→

→
=

rejectedisrequestTaskGinexistsnotif

schedulingtaskPerformGinexistsif
VO

MT

MT




  (24) 

Here, VO  indicates the verification outcomes. Next, dependent task verification ( )DV  is done; here, the dependent 

tasks status ( )ft  is checked in the MT ; if any dependent tasks are pending, then the least priority is given to that task. 
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J) Task Scheduling 

The tasks are scheduled by using OBL-Fuzzy to arrange the tasks based on priority based on ( )DV , ( )VO , and ( )Atr

. In Section 3.6, the process of OBL-Fuzzy is explained. Here, the fuzzy rules ( )Q  are generated as, 
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Here, D  indicates file size, 
spd

 implies speed, and X  specifies memory. The scheduled tasks are represented as 

follows. 
 

K) VM Load Prediction 

Likewise, to reduce the waiting time for tasks, VM load is predicted.  
 

L) Dataset 

Mainly, to train the VM load prediction system, the “VM Workload Predictor” dataset is gathered and is denoted as 
~

. 

 

M) Pre-Processing 

Next, they 
~

 are pre-processed; initially, the duplicate values 
~

 are removed, and it is specified as upDD . Then, 

missing values upDD  are imputed ( )MI  and are written as, 

k

DD
MI

up
=     (26) 

Here k  is the number of upDD . Afterward, they ( )MI  are converted into numerical values ( )llNu . Next, by using the 

Z-score formula, they llNu  are normalized. The normalized data ( )w  are given as, 






 −

= ll
w

Nu
     (27) 

Here,   the mean and standard deviation are designated, respectively, and the pre-processed data is denoted as 
l . 

N) Feature Extraction 

Then 
l , the features, such as timestamp, Central Processing Unit (CPU) core, CPU usage, memory usage, and so on, 

are extracted and indicated fet . 

 

O) Feature Selection 

Optimal features are selected fet by employing AROA. Here, maximum classification accuracy is considered as a fitness 

function. The selected features are defined as v follows. 

 

P) Classification 

The VM load is predicted based on v  employing an SMRNN. Recurrent Neural Networks (RNNs) efficiently learn from 

past experiences. Nevertheless, the RNNs suffer from vanishing gradient problems and low learning efficiency. Thus, in RNN, 

the Sinusoidal initialization technique and Maxsig activation function are utilized. In Figure 2, the SMRNN classifier diagram is 

displayed. 
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Figure 2: SMRNN classifier 

➢ Input Layer 

The v  is fed to the input layer. Later, the input layer operation outcomes ( )nJ  are subjected to the hidden layer. 

➢ Hidden Layer 

The hidden layer ( )U  is updated based on the current input and previous hidden state. 

( ) BJUU n += −   ,1
    (28) 

Here, 1−U   specifies the previous hidden state,
   signifies the Maxsig activation function, B  signifies the bias term, 

and   determines Sinusoidal initialization-based weights. 

( )( )nn JJ  ,max=      (29) 

( )
~

2sin +⎯→⎯ RfqAmnJ
    (30) 

Here,   designates the sigmoid function Am and fq  indicates the amplitude and frequency, respectively, R  implies 

the random value, and 
~

 represents the phase offset. 
 

➢ Output Layer  

The output layer ( )
jO  provides VM load prediction outcomes. 

( )BUO j +=       (31) 



Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025 

274 

The predicted VM load is signified as f . 

Pseudocode for SMRNN 

Input: Selected Features ( )v  

Output: Predicted VM load ( )
f  

Begin 

 Initialize ( )v , ( )B
 

 For each ( )v  

  Perform input layer ( )nJ  

  Discover 

   ( ) BJUU n += −   ,1
 

  Compute  

   ( )( )nn JJ  ,max=  

  Find 

   ( )
~

2sin +⎯→⎯ RfqAmnJ
 

  Implement  

   ( )BUO j +=   

 End For 

 Obtain ( )
f  

End 

The SMRNN excellently predicted the VM loads. 
 

Q) Resource Allocation 

The resources are allocated for the corresponding   by using AROA based on ( )
f  and ( )Atr . Here, a high 

utilization rate is considered as the fitness function. The allocated resources are defined as 
A . The proposed model excellently 

scheduled the tasks and allocated the resources in cloud DevOps. 
 

IV. RESULT AND DISCUSSION 

Here, the proposed method’s performance evaluation is done. Likewise, the proposed model is implemented in the 

working platform of PYTHON. 
 

A) Dataset Description 

The proposed model is assessed by employing the “VM Workload Predictor” dataset. The dataset link is given in the 

reference section. Likewise, this dataset consists of 869458 numbers of data. Among that, 80% (6,95,566) and 20% (1,73,891) 

of data are used for training and testing, respectively. 
 

B) Performance Validation 

Here, the proposed techniques are compared with prevailing methods.  
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(a) 

 

 
(b) 

 

Figure 3: Graphical representation regarding (a) energy consumption and (b) resource utilization 
 

The graphical representation of the proposed and existing techniques' displayed in Figure 3. Here, the proposed AROA 

consumed less energy of 7021 Joule and utilized a huge resource of 98.12% for 500 tasks. Nevertheless, limited performance 

was attained by the existing techniques, such as AOA, Lion Optimization Algorithm (LOA), Coyote Optimization Algorithm 

(COA), and Whale Optimization Algorithm (WOA). 
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(a) 

 

 
(b) 

 

Figure 4: Performance assessment regarding (a) response time and (b) makespan 
 

Figure 4 displays a performance assessment of the proposed and prevailing techniques. For 400 numbers of tasks, the 

proposed OBL-Fuzzy obtained a low response time of 2.8754s and a makespan of 0.0854s, while the prevailing Sigmoid Fuzzy, 

Cubic Fuzzy, Triangular Fuzzy, and Gaussian Fuzzy attained poor performance. 
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(a) 

 

 
(b) 

 

Figure 5: Comparative evaluation regarding (a) accuracy, precision, recall, (b) specificity, NPV 
 

The comparative evaluation of the proposed and conventional methods is depicted in Figure 5. Regarding accuracy, 

precision, recall, specificity, and Negative Predictive Value (NPV), the proposed SMRNN achieved 98.85%, 98.63%, 98.12%, 

98.23%, and 98.56%; yet, the prevailing techniques like RNN, Convolutional Neural Network (CNN), Deep Belief Network 

(DBN), and Deep Neural Network (DNN) attained limited performance. 
 

Table 1: Rule generation time 

Techniques Rule Generation Time (ms) 
Proposed OBL-Fuzzy 987 

Sigmoid Fuzzy 1245 

Cubic Fuzzy 1754 

Triangular Fuzzy 2086 

Gaussian Fuzzy 2369 



Sai Sandeep Ogety / IRJEMS, 4(3), 266-281, 2025 

278 

In Table 1, the rule generation time of the proposed and existing techniques is shown. The proposed OBL-Fuzzy took less 

than 987ms for rule generation, whereas the existing Sigmoid Fuzzy, Cubic Fuzzy, Triangular Fuzzy, and Gaussian Fuzzy took 

a huge amount of time. 
 

 
(a) 

 

 
(b) 

 

Figure 6: Performance analysis regarding (a) latency, (b) throughput 
 

The performance analysis of the proposed AROA and prevailing methods are depicted in Figure 6. For 100 tasks, the 

proposed AROA obtained a low latency of 1.2101s and a high throughput of 3847kbps, while the prevailing techniques attained 

poor performance.  
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Figure 7: Graph generation time 

 

Figure 7 shows the graph generation time of the proposed and existing techniques. Regarding graph generation time, the 

proposed ECK-DAG attained a low value of 3054ms, whereas the existing DAG, Weighted Graph (WG), Finite Graph (FG), 

and Acyclic Graph (AG) had high time complexity.  
 

Table 2: Clustering time 

Methods Clustering Time (ms) 
Proposed ECDBSCAN 24108 

DBSCAN 28956 

K-Means 33658 

CLARA 38054 

FCM 43625 
 

The clustering times of the proposed and prevailing techniques are depicted in Table 2. For clustering, the proposed 

ECDBSCAN took a less time of 24108ms, while the prevailing DBSCAN, K-Means, Clustering Large Applications (CLARA), 

and Fuzzy C-Means (FCM) obtained an average clustering time of 36073.25ms. 
 

 
Figure 8: Tree construction time  
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The tree construction time of the proposed and existing methods are displayed in Figure 8. Regarding tree construction 

time, the proposed HGB-MT obtained less than 2108ms, while the prevailing MT, RT, HT, and BT attained maximum time. 
 

C) Comparative Assessment 

A comparative assessment is carried out for the proposed and related works. 
 

Table 3: Comparative Analysis 

Authors’ name Techniques 
Response time 

(s) 
Makespan (s) 

Energy 

Consumption 

(Joule) 

Resource 

Utilization 

(%) 
Proposed Model OBL-Fuzzy and AROA 1.8472 0.0584 5847 96.10 

(Ben Alla et al., 

2021) 

Dynamic Priority-Queue 

(DPQ) 
1.95 0.181 - - 

(Kruekaew & 

Kimpan, 2022) 

Artificial Bee Colony (ABC) 

with Q-learning 
- 7.678 - - 

(Nabi et al., 

2021) 

Resource-aware Dynamic TS 

Approach (RDTSA) 
7.25 32.6 - - 

(Fathalla et al., 

2021) 
Best K-First-Fit (Best-KFF) - - - 53.18 

(Goyal et al., 

2021) 
WOA - - 8165.603 - 

 

Table 3 displays the comparative assessment; here, the proposed OBL-Fuzzy attained a low response time of 1.8472s and 

a low makespan of 0.181s. The proposed AROA obtained a low energy consumption of 5847Joule and a high resource utilization 

of 96.10%. Nevertheless, poor performance was attained by the existing DPQ, ABC with Q-learning, RDTSA, Best-KFF, and 

WOA. 
 

V. CONCLUSION 

Here, OBL-Fuzzy and SMRNN-based TS and RA in cloud DevOps are presented. Here, this study performed significant 

processes, such as TS and RA. For 500 tasks, the proposed AROA consumed less energy of 7021Joule. Similarly, the proposed 

SMRNN achieved a high accuracy and precision of 98.85% and 98.63%, respectively. Thus, the proposed model had high 

efficiency. The proposed model failed to preserve workflow information and user authentication even though it concentrated on 

improving the efficiency of TS and RA. 
 

Future Work 

Multi-factor authentication techniques will be introduced in the future to preserve the workflow information and perform user 

authentication. 
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