Principles and Perspectives in Medical Diagnostic Systems Employing Artificial Intelligence (AI) Algorithms


International Research Journal of Economics and Management Studies
© 2024 by IRJEMS
Volume 3  Issue 1
Year of Publication : 2024
Authors : Mehtab Tariq, Yawar Hayat, Adil Hussain, Aftab Tariq, Saad Rasool
irjems doi : 10.56472/25835238/IRJEMS-V3I1P144

Citation:

Mehtab Tariq, Yawar Hayat, Adil Hussain, Aftab Tariq, Saad Rasool. "Principles and Perspectives in Medical Diagnostic Systems Employing Artificial Intelligence (AI) Algorithms" International Research Journal of Economics and Management Studies, Vol. 3, No. 1, pp. 376-398, 2024.

Abstract:

The process of identifying a health problem, illness, disorder, or other condition is known as disease diagnosis. Diagnosing certain diseases may be quite simple at times, but there may be more difficult cases. Large data sets are accessible, however the number of instruments that can reliably, Identify the trends and formulate hypotheses. Traditional disease diagnosis techniques involve physical labor and are prone to inaccuracy. When artificial intelligence (AI) predictive approaches are used instead of solely relying on human expertise, auto diagnosis is made possible and detection mistakes are decreased. We have examined the last ten years' worth of literature in this study, from January 2009 to December 2019. Eight of the most popular databases were examined for the study, and 105 publications in all were reviewed. A thorough examination of such publications was carried out to categorize the most popular AI methods for medical diagnostic systems. We also go over a number of illnesses and the relevant Artificial Intelligence (AI) methods, such as machine learning, fuzzy logic, and deep understanding. The purpose of this study paper is to shed light on several significant aspects of the various AI methods that are being and have been utilized in the medical profession to forecast heart disease, brain disease, prostate, liver disease, and renal disease. Finally, based on a list of unresolved issues and obstacles, the study offers several directions for future research on AI-based diagnostics systems.

References:

[1] J. L. Scully, ‘‘What is a disease?’’ EMBO Rep., vol. 5, no. 7, pp. 650–653, 2004.
[2] R. Leaman, R. Islamaj Dogan, and Z. Lu, ‘‘DNorm: Disease name normalization with pairwise learning to rank,’’ Bioinformatics, vol. 29, no. 22, pp. 2909–2917, Nov. 2013.
[3] N. Armstrong and P. Hilton, ‘‘Doing diagnosis: Whether and how clinicians use a diagnostic tool of uncertain clinical utility,’’ Social Sci. Med., vol. 120, pp. 208–214, Nov. 2014.
[4] A.-L. Barabási, N. Gulbahce, and J. Loscalzo, ‘‘Network medicine: A network-based approach to human disease,’’ Nature Rev. Genet., vol. 12, no. 1, pp. 56–68, Jan. 2011.
[5] R. H. Scheuermann, W. Ceusters, and B. Smith, ‘‘Toward an ontological treatment of disease and diagnosis,’’ Summit Transl. Bioinformat., vol. 2009, p. 116, Mar. 2009.
[6] P. Croft, D. G. Altman, and J. J. Deeks, ‘‘The science of clinical practice: Disease diagnosis or patient prognosis? Evidence about ‘what is likely to happen’ should shape clinical practice,’’ BMC Med., vol. 13, no. 1, p. 20, 2015.
[7] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, ‘‘Doctor AI: Predicting clinical events via recurrent neural networks,’’ in Proc. Mach. Learn. Healthcare Conf., 2016, pp. 301–318.
[8] C. C. Lee, ‘‘Fuzzy logic in control systems: Fuzzy logic controller. I,’’ IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404–418, Mar./Apr. 1990.
[9] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1999.
[10] H. D. Beale, H. B. Demuth, and M. Hagan, Neural Network Design. Boston, MA, USA: PWS, 1996.
[11] C.-H. Weng, T. C.-K. Huang, and R.-P. Han, ‘‘Disease prediction with different types of neural network classifiers,’’ Telematics Inform., vol. 33, no. 2, pp. 277–292, 2016.
[12] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, ‘‘Disease prediction by machine learning over big data from healthcare communities,’’ IEEEAccess, vol. 5, pp. 8869–8879, 2017.
[13] J. Betancur and F. Commandeur, ‘‘Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study,’’ JACC: Cardiovascular Imag., vol. 11, no. 11, pp. 1654–1663, 2018.
[14] M. S. van Mourik, A. Troelstra, W. W. van Solinge, K. G. Moons, and M. J. Bonten, ‘‘Automated surveillance for healthcare-associated infections: Opportunities for improvement,’’ Clin. Infectious Diseases, vol. 57, no. 1, pp. 85–93, 2013.
[15] G. Luo, F. L. Nkoy, P. H. Gesteland, T. S. Glasgow, and B. L. Stone, ‘‘A systematic review of predictive modeling for bronchiolitis,’’ Int. J. Med.Inform., vol. 83, no. 10, pp. 691–714, 2014.
[16] P. Bhattacharjee, D. P. Edelson, and M. M. Churpek, ‘‘Identifying patients with sepsis on the hospital wards,’’ Chest, vol. 151, no. 4, pp. 898–907, Apr. 2017.
[17] M. Sinha, J. Jupe, H. Mack, T. P. Coleman, S. M. Lawrence, and S. I. Fraley, ‘‘Emerging technologies for molecular diagnosis of sepsis,’’Clin. Microbiol. Rev., vol. 31, no. 2, Feb. 2018.
[18] M. S. M. Aras, F. A. Ali, F. A. Azis, S. M. S. S. A. Hamid, and M. F. H. M. Basar, ‘‘Performances evaluation and comparison of two algorithms for fuzzy logic rice cooking system (MATLAB fuzzy logic toolbox and FuzzyTECH),’’ in Proc. IEEE Conf. Open Syst., Sep. 2011, pp. 400–405.
[19] F.-M. E. Uzoka, J. Osuji, F. O. Aladi, and O. U. Obot, ‘‘A framework for cell phone based diagnosis and management of priority tropical diseases,’’in Proc. IST-Africa Conf., May 2011, pp. 1–13.
[20] P. Nesteruk, L. Nesteruk, and I. Kotenko, ‘‘Creation of a fuzzy knowledge base for adaptive security systems,’’ in Proc. 22nd Euromicro Int. Conf. Parallel, Distrib., Netw.-Based Process., Feb. 2014, pp. 574–577.
[21] G. Licata, ‘‘Employing fuzzy logic in the diagnosis of a clinical case,’’ Health, vol. 2, no. 3, p. 211, 2010.
[22] M. Rana and R. Sedamkar, ‘‘Design of expert system for medical diagnosis using fuzzy logic,’’ Int. J. Sci. Eng. Res., vol. 4, no. 6, pp. 2914–2921, 2013.
[23] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.
[24] N. H. Phuong and V. Kreinovich, ‘‘Fuzzy logic and its applications in medicine,’’ Int. J. Med. Informat., vol. 62, nos. 2–3, pp. 165–173, 2001.
[25] E. Braunwald, Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, PA, USA: Saunders, 1988.
[26] A. Q. Ansari and N. K. Gupta, ‘‘Automated diagnosis of coronary heart disease using neuro-fuzzy integrated system,’’ in Proc. World Congr. Inf. Commun. Technol., Dec. 2011, pp. 1379–1384.
[27] H. H. de Carvalho, R. L. Moreno, T. C. Pimenta, P. C. Crepaldi, and E. Cintra, ‘‘A heart disease recognition embedded system with fuzzy cluster algorithm,’’ Comput. Methods Programs Biomed., vol. 110, no. 3, pp. 447–454, Jun. 2013.
[28] O. Oluwagbemi, F. Oluwagbemi, and O. Abimbola, ‘‘Ebinformatics: Ebola fuzzy informatics systems on the diagnosis, prediction and recommendation of appropriate treatments for ebola virus disease (EVD),’’ Informat. Med. Unlocked, vol. 2, pp. 12–37, 2016.
[29] T. R. Insel and B. N. Cuthbert, ‘‘Brain disorders? Precisely,’’ Science, vol. 348, no. 6234, pp. 499–500, May 2015.
[30] N. N. Gopal and M. Karnan, ‘‘Diagnose brain tumor through MRI using image processing clustering algorithms such as fuzzy c means along with intelligent optimization techniques,’’ in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res., Dec. 2010, pp. 1–4.
[31] H.-L. Chen, C.-C. Huang, X.-G. Yu, X. Xu, X. Sun, G. Wang, and S.-J. Wang, ‘‘An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach,’’ Expert Syst. Appl., vol. 40, no. 1, pp. 263–271, 2013.
[32] S. Patra and G. Thakur, ‘‘A proposed neuro-fuzzy model for adult asthma disease diagnosis,’’ Comput. Sci. Inf. Technol., vol. 3, pp. 191–205, Mar. 2013.
[33] G. H. B. Miranda and J. C. Felipe, ‘‘Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization,’’ Comput. Biol. Med., vol. 64, pp. 334–346, Sep. 2015.
[34] M. Nilashi, O. Ibrahim, H. Ahmadi, and L. Shahmoradi, ‘‘A knowledge-based system for breast cancer classification using fuzzy logic method,’’ Telematics Informat., vol. 34, no. 4, pp. 133–144, Jul. 2017.
[35] S. Satarkar and M. Ali, ‘‘Fuzzy expert system for the diagnosis of common liver disease,’’ Int. Eng. J. Res. Develop., vol. 1, no. 1, pp. 2–7, 2015.
[36] M. Kalpana and D. A. S. Kumar, ‘‘Fuzzy expert system for diagnosis of diabetes using fuzzy determination mechanism,’’ Int. J. Sci. Appl. Inf. Technol., vol. 2, no. 1, pp. 354–361, 2011.
[37] R. B. Lukmanto and E. Irwansyah, ‘‘The early detection of diabetes mellitus (DM) using fuzzy hierarchical model,’’ Procedia Comput. Sci., vol. 59, pp. 312–319, 2015.
[38] A. Rajeswari, M. S. Sidhika, M. Kalaivani, and C. Deisy, ‘‘Prediction of prediabetes using fuzzy logic based association classification,’’ in Proc. 2nd Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), Apr. 2018, pp. 782–787.
[39] N. Allahverdi and T. Akcan, ‘‘A fuzzy expert system design for diagnosis of periodontal dental disease,’’ in Proc. 5th Int. Conf. Appl. Inf. Commun. Technol. (AICT), 2011, pp. 1–5.
[40] L. H. Son, H. Fujita, N. Dey, and A. S. Ashour, ‘‘Dental diagnosis from X-ray images: An expert system based on fuzzy computing,’’ Biomed. Signal Process. Control, vol. 39, pp. 64–73, Jan. 2018.
[41] U. A. Umoh and M. M. Ntekop, ‘‘A proposed fuzzy framework for cholera diagnosis and monitoring,’’ Int. J. Comput. Appl., vol. 82, no. 17, pp. 1–10, 2013.
[42] M. Okpor, ‘‘Using fuzzy classifier for cholera analysis,’’ Int. J. Sci. Res., vol. 3, pp. 314–317, Mar. 2012.
[43] S. S. Godil, M. S. Shamim, S. A. Enam, and U. Qidwai, ‘‘Fuzzy logic: A ‘simple’ solution for complexities in neurosciences?’’ Surgical Neurol. Int., vol. 2, p. 24, Feb. 2011.
[44] P. G. Brust-Renck, V. F. Reyna, E. A. Wilhelms, and A. N. Lazar, ‘‘A fuzzy trace theory of judgment and decision-making in health care: Explanation, prediction, and application,’’ in Handbook of Health Decision Science. New York, NY, USA: Springer, 2016, pp. 71–86.
[45] M. I. Roveri, E. de Jesus Manoel, A. N. Onodera, N. R. Ortega, V. D. Tessutti, E. Vilela, N. Evêncio, and I. C. Sacco, ‘‘Assessing experience in the deliberate practice of running using a fuzzy decision-supportsystem,’’ PLoS ONE, vol. 12, no. 8, 2017, Art. no. e0183389.
[46] E. Hüllermeier, ‘‘Does machine learning need fuzzy logic?’’ Fuzzy SetsSyst., vol. 281, pp. 292–299, Dec. 2015.
[47] A. C. Jamgade and S. Zade, ‘‘Disease prediction using machine learning,’’ Int. Res. J. Eng. Technol., vol. 6, no. 5, pp. 6937–6938, 2019.
[48] G. Zhang, ‘‘A modified SVM classifier based on RS in medical disease prediction,’’ in Proc. 2nd Int. Symp. Comput. Intell. Design, vol. 1, Dec. 2009, pp. 144–147.
[49] A. S. Levey and J. Coresh, ‘‘Chronic kidney disease,’’ Lancet, vol. 379, no. 9811, pp. 165–180, Jan. 2012.
[50] P. Sinha and P. Sinha, ‘‘Comparative study of chronic kidney disease prediction using KNN and SVM,’’ Int. J. Eng. Res., vol. V4, no. 12, pp. 608–612, Dec. 2015.
[51] A. Charleonnan, T. Fufaung, T. Niyomwong, W. Chokchueypattanakit, S. Suwannawach, and N. Ninchawee, ‘‘Predictive analytics for chronic kidney disease using machine learning techniques,’’ in Proc. Manage. Innov. Technol. Int. Conf. (MITicon), Oct. 2016, p. 80.
[52] B. Zheng, S. W. Yoon, and S. S. Lam, ‘‘Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms,’’ Expert Syst. Appl., vol. 41, no. 4, pp. 1476–1482, Mar. 2014.
[53] H. Asri, H. Mousannif, H. A. Moatassime, and T. Noel, ‘‘Using machine learning algorithms for breast cancer risk prediction and diagnosis,’’ Procedia Comput. Sci., vol. 83, pp. 1064–1069, 2016.
[54] K. Sinusas, ‘‘Osteoarthritis: Diagnosis and treatment,’’ Amer. Family Physician, vol. 85, no. 1, pp. 49–56, 2012.
[55] N. Bhargava, R. Purohit, S. Sharma, and A. Kumar, ‘‘Prediction of arthritis using classification and regression tree algorithm,’’ in Proc. 2nd Int. Conf. Commun. Electron. Syst. (ICCES), Oct. 2017, pp. 606–610.
[56] N. Barakat, A. P. Bradley, and M. N. H. Barakat, ‘‘Intelligible support vector machines for diagnosis of diabetes mellitus,’’ IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 4, pp. 1114–1120, Jul. 2010.
[57] J. P. Kandhasamy and S. Balamurali, ‘‘Performance analysis of classifier models to predict diabetes mellitus,’’ Procedia Comput. Sci., vol. 47, pp. 45– 51, 2015.
[58] T. V. Sriram, M. V. Rao, G. S. Narayana, D. Kaladhar, and T. P. R. Vital, ‘‘Intelligent Parkinson disease prediction using machine learning algorithms,’’ Int. J. Eng. Innov. Technol. (IJEIT), vol. 3, no. 3, pp. 1568–1572, 2013.
[59] C. Salvatore, A. Cerasa, I. Castiglioni, F. Gallivanone, A. Augimeri, M. Lopez, G. Arabia, M. Morelli, M. Gilardi, and A. Quattrone, ‘‘Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy,’’ J. Neurosci. Methods, vol. 222, pp. 230–237, Jan. 2014.
[60] A. López Pineda, Y. Ye, S. Visweswaran, G. F. Cooper, M. M. Wagner, and F. Tsui, ‘‘Comparison of machine learning classifiers for influenza detection from emergency department free-text reports,’’ J. Biomed. Informat., vol. 58, pp. 60–69, Dec. 2015.
[61] S. A. Dwivedi, R. Borse, and A. M. Yametkar, ‘‘Lung cancer detection and classification by using machine learning & multinomial Bayesian,’’ IOSR J. Electron. Commun. Eng. (IOSR-JECE), vol. 9, no. 1, pp. 69–75, 2014.
[62] S. Marsland, Mach. Learning: Algorithmic Perspective. Boca Raton, FL, USA: CRC Press, 2015.
[63] I. Kononenko, I. Bratko, and M. Kukar, ‘‘Application of machine learning to medical diagnosis,’’ Mach. Learn. Data Mining: Methods Appl., vol. 389, p. 408, Jun. 1997.
[64] K. Suzuki, ‘‘Overview of deep learning in medical imaging,’’ Radiol. Phys. Technol., vol. 10, no. 3, pp. 257–273, 2017.
[65] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521, pp. 436–444, May 2015.
[66] H. Suzuki, H. Ohsaki, and H. Sawai, ‘‘A network-based computational model with learning,’’ in Proc. Int. Conf. Unconventional Comput. Berlin, Germany: Springer, 2010, p. 193.
[67] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, ‘‘Deep learning for healthcare: Review, opportunities and challenges,’’ Briefings Bioinf., vol. 19, no. 6, pp. 1236–1246, 2017.
[68] R. Anderson, A. Biong, and D. A. Gómez-Gualdrón, ‘‘Adsorption isotherm
[69] predictions for multiple molecules in MOFs using the same deep learning model,’’ J. Chem. Theory Comput., vol. 16, no. 2, pp. 1271–1283, 2020.
[70] [69] H. Liao, ‘‘A deep learning approach to universal skin disease classification,’’ Dept. Comput. Sci., Univ. Rochester, Rochester, NY, USA, Tech. Rep. CSC-400, 2016.
[71] D. A. Shoieb, S. M. Youssef, and W. M. Aly, ‘‘Computer-aided model for skin diagnosis using deep learning,’’ J. Image Graph., vol. 4, no. 2, pp. 122– 129, Dec. 2019.
[72] A. M. Abdel-Zaher and A. M. Eldeib, ‘‘Breast cancer classification using deep belief networks,’’ Expert Syst. Appl., vol. 46, pp. 139–144, Mar. 2016.
[73] S. Charan, M. J. Khan, and K. Khurshid, ‘‘Breast cancer detection in mammograms using convolutional neural network,’’ in Proc. Int. Conf. Comput., Math. Eng. Technol. (iCoMET), Mar. 2018, pp. 1–5.
[74] G. Swapna, R. Vinayakumar, and K. Soman, ‘‘Diabetes detection using deep learning algorithms,’’ ICT Exp., vol. 4, no. 4, pp. 243–246, 2018.
[75] D. Sisodia and D. S. Sisodia, ‘‘Prediction of diabetes using classification algorithms,’’ Procedia Comput. Sci., vol. 132, pp. 1578–1585, 2018.
[76] J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. Sricharan, ‘‘Recognizing abnormal heart sounds using deep learning,’’ 2017, arXiv:1707.04642. [Online]. Available: http://arxiv.org/ abs/1707.04642
[77] K. H. Miao and J. H. Miao, ‘‘Coronary heart disease diagnosis using deep neural networks,’’ Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 10, pp. 1–8, 2018.
[78] W. Sun, B. Zheng, and W. Qian, ‘‘Computer aided lung cancer diagnosis with deep learning algorithms,’’ Proc. SPIE, vol. 9785, Mar. 2016, Art. no. 97850Z.
[79] F.-C. Chen and M. R. Jahanshahi, ‘‘NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion,’’ IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4392–4400, May 2018.
[80] D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle, and L. A. Stewart, ‘‘Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement,’’ Systematic Rev., vol. 4, no. 1, p. 1, 2015.
[81] A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher, ‘‘The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration,’’ Ann. Internal Med., vol. 151, no. 4, p. 65, 2009

Keywords:

Artificial intelligence, Deep learning, Machine learning, Big data analytics, Chronic disease, Diagnosis, Soft computing, Healthcare prediction.