Sustainability Analysis of Shallot Farming in Simanindo District, Samosir Regency


International Research Journal of Economics and Management Studies
© 2024 by IRJEMS
Volume 3  Issue 8
Year of Publication : 2024
Authors : Dr. Aflahun Fadhly Siregar, Indah Prihartini, Rahayu Relawati, Desi Ardilla
irjems doi : 10.56472/25835238/IRJEMS-V3I8P149

Citation:

Dr. Aflahun Fadhly Siregar, Indah Prihartini, Rahayu Relawati, Desi Ardilla. "Sustainability Analysis of Shallot Farming in Simanindo District, Samosir Regency" International Research Journal of Economics and Management Studies, Vol. 3, No. 8, pp. 405-411, 2024.

Abstract:

This research aims to analyze the sustainability of shallot farming to assess its sustainability status in Simanindo District, Samosir Regency, based on the economic, ecological, social, technological, and institutional dimensions. The analytical method employed in this study is the Multidimensional Scaling (MDS) using RAP-farm software. The research results indicate that red onion farming in Simanindo District, Samosir Regency, has a sustainability level with the criteria of "sufficiently sustainable" from the perspective of 5 sustainability dimensions, namely economic, ecological, social, technological, and institutional dimensions, based on the multidimensional scaling (MDS) analysis. The dimension with the highest index and sustainability status is the institutional dimension at 89.59, while the other 4 dimensions are 39.62 (economic), 59.32 (ecological), 52.67 (social), and 23.85 (technological).

References:

[1] Chopin, P., Mubaya, C. P., Descheemaeker, K., Öborn, I., & Bergkvist, G. (2021). Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review. Agronomy for Sustainable Development, 41(2). https://doi.org/10.1007/s13593-021- 00674-3.
[2] Saida, Abdullah, Novita, E., & Ilsan, M. (2016). Sustainability Analysis of Potato Farming System at Sloping Land in Gowa Regency, South Sulawesi. Agriculture and Agricultural Science Procedia, 9, 4–12. https://doi.org/10.1016/j.aaspro.2016.02.107.
[3] Lemaire, G., Franzluebbers, A., Carvalho, P. C. de F., & Dedieu, B. (2014). Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, 190, 4–8. https://doi.org/10.1016/j.agee.2013.08.009.
[4] Patra, AK, 2023, Farming System and Sustainable Agriculture. Nipa Genx Electronic and Resources Solutions, New Delhi.
[5] Rosmiati, M., Putra, R. E., Lastini, T., Hernawan, E., Rahmayunita, I., & Maulana, F. R. (2020). Sustainability Analysis of Dairy-Horticulture Integrated Farming System. 15(2), 290–298.
[6] Galdeano-go, E. (2015). The social dimension as a driver of sustainable development: the case of family farms in southeast Spain. https://doi.org/10.1007/s11625-015-0318-4.
[7] Kumaraswamy, S. (2012). Sustainability issues in agro-ecology: Socio-ecological perspective. 3(2), 153–169.
[8] Frimawaty, E., Basukriadi, A., Syamsu, J. A., & Soesilo, T. E. B. (2013). The 3 rd International Conference on Sustainable Future for Human Security Sustainability of rice farming based on eco-farming to face food security and climate change: Case study in Jambi Province , Indonesia. Procedia Environmental Sciences, 17, 53–59. https://doi.org/10.1016/j.proenv.2013.02.011.
[9] Rope, R., Mulyo, J. H., & Rahayu, L. (n.d.). Sustainability Index of Dryland Paddy Natural Farming System in the Border Area of Morotai Island Sustainability Index of Dryland Paddy Natural Farming System in the Border Area of Morotai Island. https://doi.org/10.1088/1755-1315/518/1/012076.
[10] Tatipikalawan, J. M., Haryadi, F. T., Sulastri, E., Satya, T., & Widi, M. (2021). Bulletin of Animal Science. 45(November), 254–261. https://doi.org/10.21059/buletinpeternak.v45i4.68838.
[11] Hannus, V., Venus, T. J., & Sauer, J. (2020). Acceptance of sustainability standards by farmers - empirical evidence from Germany. Journal of Environmental Management, 267(April), 110617. https://doi.org/10.1016/j.jenvman.2020.110617.
[12] Calker, K. J. Van, Berentsen, P. B. M., & Romero, C. (2006). Development and application of a multi-attribute sustainability function for Dutch dairy farming systems. 57, 640–658. https://doi.org/10.1016/j.ecolecon.2005.05.016.
[13] Iocola, I., Campanelli, G., Diacono, M., Leteo, F., Montemurro, F., Persiani, A., & Canali, S. (n.d.). Sustainability Assessment of Organic Vegetable Production Using a Qualitative Multi-Attribute Model. https://doi.org/10.3390/su10103820.
[14] Scholten, T. (n.d.). Land Suitability Assessment and Agricultural Production Sustainability Using Machine Learning Models. 1–20.
[15] Franzluebbers, A. J., Hendrickson, J. R., Mitchell, R., Mohamed, A., Russell, J., & Strickland, T. C. (2017). Aligning Land Use with Land Potential: The Role of Integrated Agriculture. 1–5. https://doi.org/10.2134/ael2017.03.0007.
[16] Smith, C. S., & Mcdonald, G. T. (1998). Assessing the sustainability of agriculture at the planning stage. 15–37.
[17] Asiedu-ayeh, L. O., Zheng, X., Agbodah, K., & Dogbe, B. S. (2022). Promoting the Adoption of Agricultural Green Production Technologies for Sustainable Farming: A Multi-Attribute Decision Analysis.
[18] Listya, D. (2016). Analysis of urban agriculture sustainability in Metropolitan Jakarta ( case study: urban agriculture in Duri Kosambi ). Procedia - Social and Behavioral Sciences, 227(November 2015), 95–100. https://doi.org/10.1016/j.sbspro.2016.06.048.

Keywords:

Farming, Economic, Multidimensional Scaling (MDS), Agriculture.