Caroline M. Nzilu, Eric K. Bett, Jayne N. Mugwe, Christopher N. Kamau. "Duration Analysis of ISFM Technology Adoption Among Smallholder Green Gram Farmers in Kenya" International Research Journal of Economics and Management Studies, Vol. 4, No. 8, pp. 235-245, 2025. Crossref. http://doi.org/10.56472/25835238/IRJEMS-V4I8P125
Despite the well-documented benefits of Integrated Soil Fertility Management (ISFM) technologies, adoption among green gram farmers in Tharaka Nithi County, Kenya, remains limited and delayed. This study addresses a critical gap by examining not only the incidence but also the timing of adoption for three key ISFM practices: improved seeds, intercropping, and agroforestry. Using a multistage sampling approach, data were collected from 330 smallholder farmers in Chiakariga and Igambang’ombe sub-counties through structured household surveys. The study employed Kaplan-Meier survival estimates and the Cox Proportional Hazards model to examine adoption timing. The Kaplan-Meier results indicate that most adoptions occur within the first ten years of awareness, followed by a plateau. The Cox model highlights variation in adoption speed across practices but consistently identifies green gram acreage, access to credit, education, and farming experience as significant determinants. The study concludes that timely ISFM adoption is shaped by access to affordable credit, exposure to extension and training services, and farmers’ understanding of ISFM practices. Policy recommendations include expanding access to affordable, input-specific credit (e.g., for improved seeds, fertilizers, and tree seedlings), strengthening extension systems, and promoting targeted interventions for resource-constrained farmers. This methodological approach offers a basis for designing more adaptive and effective ISFM promotion strategies in semi-arid smallholder systems.
[1] Abdulai, A., & Huffman, W. E. (2005). The diffusion of new agricultural technologies: The case of crossbred-cow technology in Tanzania. American Journal of Agricultural Economics, 87(3), 645–659.
[2] AGRA. (2021). Africa Agriculture Status Report 2021: Accelerating African Food Systems Transformation. Nairobi, Kenya: Alliance for a Green Revolution in Africa.
[3] Batz, F-J., Janssen, W., and Peters, K.J. (2003). Predicting Technology Adoption to Improve Research Priority-Setting. Agricultural Economics, 28:151-164.
[4] Beegle, K., Carletto, C., & Himelein, K. (2012). Reliability of recall in agricultural data. Journal of Development Economics, 98(1), 34–41. https://doi.org/10.1016/j.jdeveco.2011.09.005
[5] Belay, A., Mirzabaev, A., Recha, J. W., Oludhe, C., Osano, P. M., Berhane, Z., Olaka, L. A., Tegegne, Y. T., Demissie, T., Mutsami, C., & Solomon, D. (2023). Does climate-smart agriculture improve household income and food security? Evidence from Southern Ethiopia. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03563-y
[6] Beyene, A. D., & Kassie, M. (2015). Speed of adoption of improved maize varieties in Tanzania: An application of duration analysis. Technological Forecasting and Social Change, 96, 298–307. https://doi.org/10.1016/j.techfore.2015.04.00e
[7] FAO, IFAD, UNICEF, WFP, & WHO. (2020). The state of food security and nutrition in the world 2020: Transforming food systems for affordable healthy diets. FAO. https://doi.org/10.4060/ca9692en
[8] Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255–298.
[9] Gao, Y., Zhao, D., Yu, L., & Yang, H. (2019). Duration analysis on the adoption behavior of green control techniques. Environmental Science and Pollution Research, 26(7), 6319–6327. https://doi.org/10.1007/s11356-018-04088-9
[10] Greene, W. H. (2003). Econometric analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.
[11] Jaetzold, R., Schmidt, H., Hornetz, B., & Shisanya, C. (2007). Farm Management Handbook of Kenya, Vol. II: Natural Conditions and Farm Management Information, 2nd Edition. Ministry of Agriculture/GTZ, Nairobi.
[12] Kassie, M., Jaleta, M., Shiferaw, B., Mmbando, F., & Mekuria, M. (2013). Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technological Forecasting and Social Change, 80(3), 525–540.
[13] Kassie, M., Shiferaw, B., & Muricho, G. (2015). Agricultural technology, crop income, and poverty alleviation in Uganda. World Development, 66, 272-292.
[14] Kassie, M., Shiferaw, B., and Muricho, G. (2011). Agricultural technology, crop income, and poverty alleviation in Uganda. World Dev. 39, 1784–1795. doi: 10.1016/j.worlddev.2011.04.023
[15] Kenya National Bureau of Statistics (KNBS) (2019). Kenya Population and Housing Census Volume I: Population By County and Sub-County. Nairobi: KNBS
[16] Kenya National Bureau of Statistics. (2018). Kenya Integrated Household Budget Survey (KIHBS) 2015-2016: Basic report. Kenya National Bureau of Statistics. Available at https://statistics.knbs.or.ke/nada/index.php
[17] Khonje, M., Manda, J., Alene, A. D., & Kassie, M. (2015). Analysis of adoption and impacts of improved maize varieties in Eastern Zambia. World Development, 66, 695-706.
[18] Kiefer, N.M., (1988). Economic duration data and hazard functions, J. of Econ. Lit. 646-679.
[19] Kihara, J., MacCarthy, D. S., Bationo, A., Koala, S., & Hickman, J. (2016). Climate Smart Agriculture: A Synthesis of Empirical Evidence of Food Security and Mitigation Impacts in Africa.
[20] KIPPRA. (2024). Tharaka Nithi County Labour Productivity Report. Kenya Institute for Public Policy Research and Analysis.
[21] Kiptot, E., & Franzel, S. (2011). Gender and agroforestry in Africa: Are women participating? ICRAF Working Paper No. 139. World Agroforestry Centre.
[22] Lowder, S. K., Skoet, J., & Raney, T. (2016). The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development, 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041
[23] Marechera, G., Macharia, I., Muinga, G., Mugo, S., Rotich, R., Oniang'o, R. K., Karanja, J., Obunyali, C., & Oikeh, S. O. (2019). Duration analysis of DroughtTEGO® hybrid maize adoption in Kenya. African Journal of Food, Agriculture, Nutrition and Development, 19(1), 14195-14213.
[24] Mazungwi, B., Njoloma, J. P., Khataza, R. R., et al. (2024). Why do farmers wait so long before adopting fruit tree-based agroforestry technologies in Malawi? An application of hazard duration analysis. Agroforestry Systems, 98, 2973–2983.
[25] Mekonnen, Z., Kidemu, M., Abebe, H., Semere, M., Gebreyesus, M., Worku, A., Tesfaye, M., & Chernet, A. (2021). Traditional knowledge and institutions for sustainable climate change adaptation in Ethiopia.
[26] Mucheru-Muna, M., Mugendi, D., Pypers, P., Mugwe, J., Kung’u, J. A. M. E. S., Vanlauwe, B., & Merckx, R. (2014). Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central Kenya small-hold farms. Experimental Agriculture.
[27] Mugo, S., Mutua, J., & Wambua, B. (2023). Simulated effects of climate change on green gram production in Kitui County, Kenya. Frontiers in Sustainable Food Systems, 7, 1144663. https://doi.org/10.3389/fsufs.2023.1144663
[28] Nderi, P. O., Muthee, L. W., Ondiko, S. M., & Ogindo, H. O. (2014). Livestock farmers’ perceptions on the relevance of natural licks in Igambang’ombe Division, Tharaka-Nithi County, Kenya.
[29] Ndiritu, S. W., Kassie, M., and Shiferaw, B. (2014). Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 49, 117–127. doi: 10.1016/j.foodpol.2014.06.010
[30] Nganga, W. B., Ng’etich, K. O., Macharia, M. J., Kiboi, N. M., Adamtey, N., and Ngetich, K. F. (2020). Multi-influencing-factors’ evaluation for organic-based soil fertility technologies out-scaling in Upper Tana Catchment in Kenya. Sci. Afr. 7:e00231. doi:10.1016/j.sciaf.2019.e00231
[31] Odendo, M., Obare, G., & Salasya, B. (2011). What factors influence the speed of adoption of soil fertility management technologies? Evidence from Western Kenya. Journal of Development and Agricultural Economics, 3(14), 627–637. https://doi.org/10.5897/JDAE11.090.
[32] Ragasa, C., Lambrecht, I., & Kufoalor, D. S. (2018). Limitations of contract farming as a pro-poor strategy: The case of maize outgrower schemes in Upper West Ghana. World Development, 102, 30–56. https://doi.org/10.1016/j.worlddev.2017.09.008
[33] Singanga N., Woomer P.L editors (2009). Intergrated Soil Fertility Management in Africa: Principles, Practices and Develomental Process. Tropical Soil Biology and Fertility IITA, Nairobi.
[34] Spielman, D. J., Ekboir, J., & Davis, K. (2009). The art and science of innovation systems inquiry: Applications to Sub-Saharan African agriculture. Technology in Society, 31(4), 399–405.
[35] Teklewold, H., M. Kassie, and B. Shiferaw (2013a). Adoption of multiple sustainable agricultural practices in rural Ethiopia. Journal of agricultural economics, 64(3), 597-623.
[36] Tittonell, P., Corbeels, M., van Wijk, M. T., Vanlauwe, B., & Giller, K. E. (2008). Combining organic and mineral fertilizers for integrated soil fertility management in smallholder farming systems of Kenya: Explorations using the crop-soil model FIELD. Agronomy Journal, 100(5), 1511–1526. https://doi.org/10.2134/agronj2007.0355
[37] Vanlauwe, B., & Zingore, S. (2011). Integrated soil fertility management in Africa: Principles, practices, and development process. Tropical Soil Biology and Fertility Institute of CIAT.
[38] Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., ... & Sanginga, N. (2010). Integrated soil fertility management operational definition and consequences for implementation and dissemination. Outlook on Agriculture, 39(1), 17–24.
[39] Vanlauwe, B., Wendt, J., & Giller, K. E. (2015). A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crops Research, 155, 10–13.
[40] World Bank. (2008). World development report 2008: Agriculture for development. World Bank. https://doi.org/10.1596/978-0-8213-6807-7
[41] Wossen, T., Abdoulaye, T., Alene, A., Feleke, S., Olanrewaju, A., & Manyong, V. (2017). Impacts of extension access and cooperative membership on technology adoption and household welfare. Journal of Rural Studies, 54, 223-233.
[42] Yigezu, Y., Mugera, A., El-Shater, T., Aw-Hassan, A., Piggin, C., Haddad, A., Khalil, Y., & Loss, S. (2018). Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technological Forecasting and Social Change.
Adoption, Cox Model, Duration, ISFM Technologies, Kaplan-Meier, Smallholder Farmers.