Enhancing Fermatean Fuzzy Transportation Problems: An Innovative Score Function-Based Optimization Strategy


International Research Journal of Economics and Management Studies
© 2023 by IRJEMS
Volume 2  Issue 4
Year of Publication : 2023
Authors : Wajahat Ali, Shakeel Javaid
irjems doi : 10.56472/25835238/IRJEMS-V2I4P164

Citation:

Wajahat Ali, Shakeel Javaid. "Enhancing Fermatean Fuzzy Transportation Problems: An Innovative Score Function-Based Optimization Strategy" International Research Journal of Economics and Management Studies, Vol. 2, No. 4, pp. 546-558, 2023.

Abstract:

This research paper introduces a novel approach for optimizing Fermatean fuzzy transportation problems (FFTP) by integrating a unique score function. Fermatean fuzzy numbers (FFN), known for their ability to represent uncertainty, pose challenges in transportation optimization. The proposed score function addresses these challenges by providing a comprehensive evaluation metric. We developed a traditional transportation problem (TP) model with a fermatean fuzzy environment (FFE) and, utilizing a new score function, transformed it into the deterministic form. Then, using the expected value technique, we created a new multiobjective, multi-level solid transportation model (MOMLST) using FFE and translated it into crisp form. Again, develop a multiobjective, multi-level solid transportation problem with fermatean fuzzy parameters (MOMLSTPWFF). It cannot be directly optimized because the fermatean fuzzy parameters (FFP) exist in levels of objective functions and are subject to constraints. However, we will follow the new score function in FFE and convert the mathematical model into crisp form. The numerical example is also provided to justify the convenience of the MOMLSTPWFF mathematical model and find a TP strategy that is best for our proposed mathematical model.

References:

[1] Liu, S.-T. (2006). Fuzzy total transportation cost measures for fuzzy solid transportation problem. Applied Mathematics and Computation, 174(2), 927– 941. https://doi.org/10.1016/j.amc.2005.05.018
[2] Kundu, P., Kar, S., & Maiti, M. (2013). Multiobjective multi-item solid transportation problem in fuzzy environment. Applied Mathematical Modelling, 37(4), 2028–2038. https://doi.org/10.1016/j.apm.2009.10.034
[3] Tao, Z., & Xu, J. (2012). A class of rough multiple objective programming and its application to solid transportation problem. Information Sciences, 188, 215–235.
[4] Pramanik, S., Jana, D. K., & Maiti, M. (2013). Multiobjective solid transportation problem in imprecise environments. Journal of Transportation Security, 6, 131–150.
[5] Kundu, P., Kar, S., & Maiti, M. (2014). Multiobjective solid transportation problems with budget constraint in uncertain environment. International Journal of Systems Science, 45(8), 1668–1682. https://doi.org/10.1080/00207721.2012.748944
[6] Shivani, Rani, D., & Ebrahimnejad, A. (2022). An approach to solve an unbalanced fully rough multiobjective fixed-charge transportation problem. Computational and Applied Mathematics, 41(4), 129.
[7] Gul, M., Lo, H.-W., & Yucesan, M. (2021). Fermatean fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing. Complex & Intelligent Systems, 7, 2635–2653.
[8] Singh, S. K., & Yadav, S. P. (2016). A new approach for solving intuitionistic fuzzy transportation problem of type-2. Annals of Operations Research, 243, 349–363.
[9] Revathi, A., Mohanaselvi, S., & Jana, D. (2021). Uncertain multi objective multi-item four-dimensional transportation problem with vehicle speed. Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath University, Chennai, India.
[10] Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82(3), 299–305.
[11] Li, L., & Lai, K. K. (2000). A fuzzy approach to the multiobjective transportation problem. Computers & Operations Research, 27(1), 43–57. https://doi.org/10.1016/S0305-0548(99)00007-6
[12] Das, S. K., & Roy, S. K. (2019). Effect of variable carbon emission in a multiobjective transportation-p-facility location problem under neutrosophic environment. Computers & Industrial Engineering, 132, 311–324. https://doi.org/10.1016/j.cie.2019.04.037
[13] Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663–674.
[14] Niksirat, M. (2022). A new approach to solve fully fuzzy multiobjective transportation problem. Fuzzy Information and Engineering, 14(4), 456–467. https://doi.org/10.1080/16168658.2022.2152836
[15] Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. (2022). Fractional transportation problem under interval-valued Fermatean fuzzy sets. AIMS Mathematics, 7(9), 17327–17348.
[16] Silambarasan, I. (2020). New operators for Fermatean fuzzy sets. Ann. Commun. Math, 3(2), 116–131.
[17] Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3
[18] Dalman, H. (2018). Uncertain programming model for multi-item solid transportation problem. International Journal of Machine Learning and Cybernetics, 9, 559–567.
[19] Gupta, A., & Kumar, A. (2012). A new method for solving linear multiobjective transportation problems with fuzzy parameters. Applied Mathematical Modelling, 36(4), 1421–1430. https://doi.org/10.1016/j.apm.2011.08.044
[20] Singh, S., Pradhan, A., & Biswal, M. (2019). Multiobjective solid transportation problem under stochastic environment. Sādhanā, 44(5), 105.
[21] Jalil, S. A., Javaid, S., & Muneeb, S. M. (2018). A decentralized multi-level decision making model for solid transportation problem with uncertainty. International Journal of System Assurance Engineering and Management, 9, 1022–1033.
[22] Revathi, A., & Mohanaselvi, S. (2021). A fuzzy goal programming approach to four dimensional multi level multi objective multi-item fractional transportation problem under uncertain environment. Advances in Dynamical Systems and Applications (ADSA), 16(2), 927–948.
[23] Nagar, P., Srivastava, P. K., & Srivastava, A. (2022). A new dynamic score function approach to optimize a special class of Pythagorean fuzzy transportation problem. International Journal of System Assurance Engineering and Management, 1–10.
[24] Sharma, M., Bhargava, A., Kumar, S., Rathour, L., Mishra, L. N., Pandey, S., & others. (2022). A FERMATEAN FUZZY RANKING FUNCTION IN OPTIMIZATION OF INTUITIONISTIC FUZZY TRANSPORTATION PROBLEMS. Advanced Mathematical Models & Applications, 7(2).
[25] Akram, M., Shahzadi, S., Shah, S. M. U., & Allahviranloo, T. (2023). An extended multiobjective transportation model based on Fermatean fuzzy sets. Soft Computing, 1–23.
[26] Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. (2023). Extended DEA method for solving multiobjective transportation problem with Fermatean fuzzy sets. Aims Math, 8, 924–961.
[27] Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in Control and Optimization, 4, 100040. https://doi.org/10.1016/j.rico.2021.100040
[28] Bagheri, M., Ebrahimnejad, A., Razavyan, S., Hosseinzadeh Lotfi, F., & Malekmohammadi, N. (2022). Fuzzy arithmetic DEA approach for fuzzy multiobjective transportation problem. Operational Research, 1–31.
[29] Moanta, D. (2007). Some aspects on solving a linear fractional transportation problem. Journal of Applied Quantitative Methods, 2(3), 343–348.
[30] Bharati, S. K., & Singh, S. (2018). Transportation problem under interval-valued intuitionistic fuzzy environment. International Journal of Fuzzy Systems, 20, 1511–1522.
[31] Sergi, D., & Sari, I. U. (2021). Fuzzy capital budgeting using fermatean fuzzy sets. Intelligent and Fuzzy Techniques: Smart and Innovative Solutions: Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, July 21-23, 2020, 448–456.
[32] Sharma, M., Kamini, Dhaka, A., Nandal, A., Rosales, H. G., Monteagudo, F. E. L., Hernández, A. G., & Hoang, V. T. (2023). Fermatean Fuzzy Programming with New Score Function: A New Methodology to Multiobjective Transportation Problems. Electronics, 12(2), 277. https://doi.org/10.3390/electronics12020277
[33] Fermatean fuzzy weighted averaging/geometric operators and its application in multicriteria decision-making methods. Engineering Applications of Artificial Intelligence, 85, 112–121
[34] Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in Control and Optimization, 4, 100040.
[35] Sharma, M., Kamini, Dhaka, A., Nandal, A., Rosales, H. G., Monteagudo, F. E. L., Hernández, A. G., & Hoang, V. T. (2023). Fermatean Fuzzy Programming with New Score Function: A New Methodology to Multiobjective Transportation Problems. Electronics, 12(2), 277.
[36] Das, S. K., Roy, S. K., & Weber, G.-W. (2020). Application of type-2 fuzzy logic to a multiobjective green solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Transactions on Fuzzy Systems, 28(11), 2711–2725.
[37] Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1–4), 224– 230. https://doi.org/10.1002/sapm1941201224
[38] Koopmans, T. C. (1949). Optimum utilization of the transportation system. Econometrica: Journal of the Econometric Society, 136–146. https://doi.org/10.2307/1907301
[39] Ghosh, S., Roy, S. K., Ebrahimnejad, A., & Verdegay, J. L. (2021). Multiobjective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex & Intelligent Systems, 7, 1009–1023.
[40] Midya, S., Roy, S. K., & Yu, V. F. (2021). Intuitionistic fuzzy multi-stage multiobjective fixed-charge solid transportation problem in a green supply chain. International Journal of Machine Learning and Cybernetics, 12, 699–717.
[41] Dantzig, G. (1963). Linear programming and extensions. Princeton University Press. https://doi.org/10.1515/9781400884179
[42] Zadeh, L. (1965). Fuzzy sets. Inform Control, 8, 338–353.
[43] Ghosh, S., Roy, S. K., & Fügenschuh, A. (2022). The Multiobjective Solid Transportation Problem with Preservation Technology Using Pythagorean Fuzzy Sets. International Journal of Fuzzy Systems, 24(6), 2687–2704.
[44] Giri, B. K., & Roy, S. K. (2022). Neutrosophic multiobjective green four-dimensional fixed-charge transportation problem. International Journal of Machine Learning and Cybernetics, 13(10), 3089–3112.
[45] Mahmoodirad, A., Allahviranloo, T., & Niroomand, S. (2019). A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft Computing, 23(12), 4521–4530.
[46] Abd El-Wahed, W. F., & Lee, S. M. (2006). Interactive fuzzy goal programming for multiobjective transportation problems. Omega, 34(2), 158–166.
[47] Roy, S. K., Midya, S., & Weber, G.-W. (2019). Multiobjective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Computing and Applications, 31, 8593–8613.
[48] Sakawa, M. (1984). Interactive fuzzy goal programming for multiobjective nonlinear programming problems and its application to water quality management. Control and Cybernetics, 13, 217–228.
[49] Gupta, A., & Kumar, A. (2012). A new method for solving linear multiobjective transportation problems with fuzzy parameters. Applied Mathematical Modelling, 36(4), 1421–1430.
[50] Bera, R. K., & Mondal, S. K. (2022). A multiobjective transportation problem with cost-dependent credit period policy under Gaussian fuzzy environment. Operational Research, 22(4), 3147–3182.
[51] Bit, A., Biswal, M., & Alam, S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50(2), 135–141.
[52] Ghosh, S., Roy, S. K., & Fügenschuh, A. (2022). The Multiobjective Solid Transportation Problem with Preservation Technology Using Pythagorean Fuzzy Sets. International Journal of Fuzzy Systems, 24(6), 2687–2704.
[53] Kundu, P., Kar, S., & Maiti, M. (2013). Multiobjective multi-item solid transportation problem in fuzzy environment. Applied Mathematical Modelling, 37(4), 2028–2038.
[54] Korukoğlu, S., & Ballı, S. (2011). An improved Vogel's approximation method for the transportation problem. Mathematical and Computational Applications, 16(2), 370–381.

Keywords:

Fermatean Fuzzy Transportation Problems, Optimization, New Score Function, Uncertainty Modeling, Multiobjective Optimization.