Wajahat Ali, Shakeel Javaid. "Enhancing Fermatean Fuzzy Transportation Problems: An Innovative Score Function-Based Optimization Strategy" International Research Journal of Economics and Management Studies, Vol. 2, No. 4, pp. 546-558, 2023.
This research paper introduces a novel approach for optimizing Fermatean fuzzy transportation problems (FFTP) by integrating a unique score function. Fermatean fuzzy numbers (FFN), known for their ability to represent uncertainty, pose challenges in transportation optimization. The proposed score function addresses these challenges by providing a comprehensive evaluation metric. We developed a traditional transportation problem (TP) model with a fermatean fuzzy environment (FFE) and, utilizing a new score function, transformed it into the deterministic form. Then, using the expected value technique, we created a new multiobjective, multi-level solid transportation model (MOMLST) using FFE and translated it into crisp form. Again, develop a multiobjective, multi-level solid transportation problem with fermatean fuzzy parameters (MOMLSTPWFF). It cannot be directly optimized because the fermatean fuzzy parameters (FFP) exist in levels of objective functions and are subject to constraints. However, we will follow the new score function in FFE and convert the mathematical model into crisp form. The numerical example is also provided to justify the convenience of the MOMLSTPWFF mathematical model and find a TP strategy that is best for our proposed mathematical model.
[1] Liu, S.-T. (2006). Fuzzy total transportation cost measures for fuzzy solid transportation problem. Applied Mathematics and Computation, 174(2), 927–
941. https://doi.org/10.1016/j.amc.2005.05.018
[2] Kundu, P., Kar, S., & Maiti, M. (2013). Multiobjective multi-item solid transportation problem in fuzzy environment. Applied Mathematical
Modelling, 37(4), 2028–2038. https://doi.org/10.1016/j.apm.2009.10.034
[3] Tao, Z., & Xu, J. (2012). A class of rough multiple objective programming and its application to solid transportation problem. Information Sciences, 188,
215–235.
[4] Pramanik, S., Jana, D. K., & Maiti, M. (2013). Multiobjective solid transportation problem in imprecise environments. Journal of Transportation
Security, 6, 131–150.
[5] Kundu, P., Kar, S., & Maiti, M. (2014). Multiobjective solid transportation problems with budget constraint in uncertain environment. International
Journal of Systems Science, 45(8), 1668–1682. https://doi.org/10.1080/00207721.2012.748944
[6] Shivani, Rani, D., & Ebrahimnejad, A. (2022). An approach to solve an unbalanced fully rough multiobjective fixed-charge transportation
problem. Computational and Applied Mathematics, 41(4), 129.
[7] Gul, M., Lo, H.-W., & Yucesan, M. (2021). Fermatean fuzzy TOPSIS-based approach for occupational risk assessment in manufacturing. Complex &
Intelligent Systems, 7, 2635–2653.
[8] Singh, S. K., & Yadav, S. P. (2016). A new approach for solving intuitionistic fuzzy transportation problem of type-2. Annals of Operations
Research, 243, 349–363.
[9] Revathi, A., Mohanaselvi, S., & Jana, D. (2021). Uncertain multi objective multi-item four-dimensional transportation problem with vehicle
speed. Proceedings of the First International Conference on Computing, Communication and Control System, I3CAC 2021, 7-8 June 2021, Bharath
University, Chennai, India.
[10] Chanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and
Systems, 82(3), 299–305.
[11] Li, L., & Lai, K. K. (2000). A fuzzy approach to the multiobjective transportation problem. Computers & Operations Research, 27(1), 43–57.
https://doi.org/10.1016/S0305-0548(99)00007-6
[12] Das, S. K., & Roy, S. K. (2019). Effect of variable carbon emission in a multiobjective transportation-p-facility location problem under neutrosophic
environment. Computers & Industrial Engineering, 132, 311–324. https://doi.org/10.1016/j.cie.2019.04.037
[13] Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663–674.
[14] Niksirat, M. (2022). A new approach to solve fully fuzzy multiobjective transportation problem. Fuzzy Information and Engineering, 14(4), 456–467.
https://doi.org/10.1080/16168658.2022.2152836
[15] Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. (2022). Fractional transportation problem under interval-valued Fermatean fuzzy
sets. AIMS Mathematics, 7(9), 17327–17348.
[16] Silambarasan, I. (2020). New operators for Fermatean fuzzy sets. Ann. Commun. Math, 3(2), 116–131.
[17] Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55.
https://doi.org/10.1016/0165-0114(78)90031-3
[18] Dalman, H. (2018). Uncertain programming model for multi-item solid transportation problem. International Journal of Machine Learning and
Cybernetics, 9, 559–567.
[19] Gupta, A., & Kumar, A. (2012). A new method for solving linear multiobjective transportation problems with fuzzy parameters. Applied Mathematical
Modelling, 36(4), 1421–1430. https://doi.org/10.1016/j.apm.2011.08.044
[20] Singh, S., Pradhan, A., & Biswal, M. (2019). Multiobjective solid transportation problem under stochastic environment. Sādhanā, 44(5), 105.
[21] Jalil, S. A., Javaid, S., & Muneeb, S. M. (2018). A decentralized multi-level decision making model for solid transportation problem with
uncertainty. International Journal of System Assurance Engineering and Management, 9, 1022–1033.
[22] Revathi, A., & Mohanaselvi, S. (2021). A fuzzy goal programming approach to four dimensional multi level multi objective multi-item fractional
transportation problem under uncertain environment. Advances in Dynamical Systems and Applications (ADSA), 16(2), 927–948.
[23] Nagar, P., Srivastava, P. K., & Srivastava, A. (2022). A new dynamic score function approach to optimize a special class of Pythagorean fuzzy
transportation problem. International Journal of System Assurance Engineering and Management, 1–10.
[24] Sharma, M., Bhargava, A., Kumar, S., Rathour, L., Mishra, L. N., Pandey, S., & others. (2022). A FERMATEAN FUZZY RANKING FUNCTION IN
OPTIMIZATION OF INTUITIONISTIC FUZZY TRANSPORTATION PROBLEMS. Advanced Mathematical Models & Applications, 7(2).
[25] Akram, M., Shahzadi, S., Shah, S. M. U., & Allahviranloo, T. (2023). An extended multiobjective transportation model based on Fermatean fuzzy
sets. Soft Computing, 1–23.
[26] Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. (2023). Extended DEA method for solving multiobjective transportation problem
with Fermatean fuzzy sets. Aims Math, 8, 924–961.
[27] Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in Control and Optimization, 4, 100040.
https://doi.org/10.1016/j.rico.2021.100040
[28] Bagheri, M., Ebrahimnejad, A., Razavyan, S., Hosseinzadeh Lotfi, F., & Malekmohammadi, N. (2022). Fuzzy arithmetic DEA approach for fuzzy
multiobjective transportation problem. Operational Research, 1–31.
[29] Moanta, D. (2007). Some aspects on solving a linear fractional transportation problem. Journal of Applied Quantitative Methods, 2(3), 343–348.
[30] Bharati, S. K., & Singh, S. (2018). Transportation problem under interval-valued intuitionistic fuzzy environment. International Journal of Fuzzy
Systems, 20, 1511–1522.
[31] Sergi, D., & Sari, I. U. (2021). Fuzzy capital budgeting using fermatean fuzzy sets. Intelligent and Fuzzy Techniques: Smart and Innovative Solutions:
Proceedings of the INFUS 2020 Conference, Istanbul, Turkey, July 21-23, 2020, 448–456.
[32] Sharma, M., Kamini, Dhaka, A., Nandal, A., Rosales, H. G., Monteagudo, F. E. L., Hernández, A. G., & Hoang, V. T. (2023). Fermatean Fuzzy
Programming with New Score Function: A New Methodology to Multiobjective Transportation Problems. Electronics, 12(2), 277.
https://doi.org/10.3390/electronics12020277
[33] Fermatean fuzzy weighted averaging/geometric operators and its application in multicriteria decision-making methods. Engineering Applications of
Artificial Intelligence, 85, 112–121
[34] Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in Control and Optimization, 4, 100040.
[35] Sharma, M., Kamini, Dhaka, A., Nandal, A., Rosales, H. G., Monteagudo, F. E. L., Hernández, A. G., & Hoang, V. T. (2023). Fermatean Fuzzy
Programming with New Score Function: A New Methodology to Multiobjective Transportation Problems. Electronics, 12(2), 277.
[36] Das, S. K., Roy, S. K., & Weber, G.-W. (2020). Application of type-2 fuzzy logic to a multiobjective green solid transportation–location problem with
dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Transactions on Fuzzy Systems, 28(11), 2711–2725.
[37] Hitchcock, F. L. (1941). The distribution of a product from several sources to numerous localities. Journal of Mathematics and Physics, 20(1–4), 224–
230. https://doi.org/10.1002/sapm1941201224
[38] Koopmans, T. C. (1949). Optimum utilization of the transportation system. Econometrica: Journal of the Econometric Society, 136–146.
https://doi.org/10.2307/1907301
[39] Ghosh, S., Roy, S. K., Ebrahimnejad, A., & Verdegay, J. L. (2021). Multiobjective fully intuitionistic fuzzy fixed-charge solid transportation
problem. Complex & Intelligent Systems, 7, 1009–1023.
[40] Midya, S., Roy, S. K., & Yu, V. F. (2021). Intuitionistic fuzzy multi-stage multiobjective fixed-charge solid transportation problem in a green supply
chain. International Journal of Machine Learning and Cybernetics, 12, 699–717.
[41] Dantzig, G. (1963). Linear programming and extensions. Princeton University Press. https://doi.org/10.1515/9781400884179
[42] Zadeh, L. (1965). Fuzzy sets. Inform Control, 8, 338–353.
[43] Ghosh, S., Roy, S. K., & Fügenschuh, A. (2022). The Multiobjective Solid Transportation Problem with Preservation Technology Using Pythagorean
Fuzzy Sets. International Journal of Fuzzy Systems, 24(6), 2687–2704.
[44] Giri, B. K., & Roy, S. K. (2022). Neutrosophic multiobjective green four-dimensional fixed-charge transportation problem. International Journal of
Machine Learning and Cybernetics, 13(10), 3089–3112.
[45] Mahmoodirad, A., Allahviranloo, T., & Niroomand, S. (2019). A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft
Computing, 23(12), 4521–4530.
[46] Abd El-Wahed, W. F., & Lee, S. M. (2006). Interactive fuzzy goal programming for multiobjective transportation problems. Omega, 34(2), 158–166.
[47] Roy, S. K., Midya, S., & Weber, G.-W. (2019). Multiobjective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural
Computing and Applications, 31, 8593–8613.
[48] Sakawa, M. (1984). Interactive fuzzy goal programming for multiobjective nonlinear programming problems and its application to water quality
management. Control and Cybernetics, 13, 217–228.
[49] Gupta, A., & Kumar, A. (2012). A new method for solving linear multiobjective transportation problems with fuzzy parameters. Applied Mathematical
Modelling, 36(4), 1421–1430.
[50] Bera, R. K., & Mondal, S. K. (2022). A multiobjective transportation problem with cost-dependent credit period policy under Gaussian fuzzy
environment. Operational Research, 22(4), 3147–3182.
[51] Bit, A., Biswal, M., & Alam, S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and
Systems, 50(2), 135–141.
[52] Ghosh, S., Roy, S. K., & Fügenschuh, A. (2022). The Multiobjective Solid Transportation Problem with Preservation Technology Using Pythagorean
Fuzzy Sets. International Journal of Fuzzy Systems, 24(6), 2687–2704.
[53] Kundu, P., Kar, S., & Maiti, M. (2013). Multiobjective multi-item solid transportation problem in fuzzy environment. Applied Mathematical
Modelling, 37(4), 2028–2038.
[54] Korukoğlu, S., & Ballı, S. (2011). An improved Vogel's approximation method for the transportation problem. Mathematical and Computational
Applications, 16(2), 370–381.
Fermatean Fuzzy Transportation Problems, Optimization, New Score Function, Uncertainty Modeling, Multiobjective Optimization.